离散课后习题答案 联系客服

发布时间 : 星期四 文章离散课后习题答案更新完毕开始阅读9207391ec281e53a5802ff5f

因为P 为T,Q(?2)为T,Q(3)为T,Q(6)为F,R(5)为F,所以 (?x)(P→Q(x))∨R(a)? ((T→T)∧(T→T)∧(T→F))∨F? F (4) 解:a) (?u)(?v)(P(u,z)→Q(v))?S(x,y) b) (?u)(P(u)→ (R(u)∨Q(u))∧(?v)R(v))→(?z)S(x,z) (5) 解:a) ((?y)A(u,y)→(?x)B(x,v))∧(?x)(?z)C(x,t,z) b) ((?y)P(u,y)∧(?z)Q(u,z))∨(?x)R(x,t)

习题2-5

(1)解: a) P(a,f(a))∧P(b,f(b))?P(1,f(1))∧P(2,f(2))?P(1,2)∧P(2,1)??T∧F?F

b) (?x)(?y)P(y,x)? (?x) (P(1,x)∨P(2,x))? (P(1,1)∨P(2,1))∧(P(1,2)∨P(2,2))

? (T∨F)∧(T∨F)?? T c) (?x)( ?y)(P(x,y)→P(f(x),f(y)))??

? (?x) ((P(x,1)→P(f(x),f(1)))∧(P(x,2) →P(f(x)f(2)))) ? (P(1,1)→P(f(1),f(1)))∧(P(1,2)→P(f(1),f(2))) ∧(P(2,1)→P(f(2),f(1)))∧(P(2,2) →P(f(2),f(2)))

? (P(1,1)→P(2,2))∧(P(1,2)→P(2,1))∧(P(2,1)→P(1,2))∧(P(2,2)→P(1,1)) ? (T→F∧(T→F)∧(F→T)∧(F→T)?F∧F∧T∧T?F (2)解:a) (?x)(P(x)→Q(f(x),a))??

?(P(1)→Q(f(1),1))∧(P(2)→Q(f(2),1)) ? (F→Q(2,1))∧(T→Q(1,1))??? (F→F)∧(T→T)??T b) (?x)(P(f(x))∧Q(x,f(a))??

? (P(f(1))∧Q(1,f(1)))∨(P(f(2))∧Q(2,f(1)) ? (T∧T)∨(F∧F)??T c) (?x)(P(x)∧Q(x,a))

? (P(1)∧Q(1,a))∨(P(2)∧Q(2,a)) ? (P(1)∧Q(1,1))∨(P(2)∧Q(2,1))??? (F∧T)∨(T∧F)??F d) (?x)( ?y)(P(x)∧Q(x,y))??? (?x) (P(x)∧(?y)Q(x,y))??? (?x) (P(x)∧(Q(x,1)∨Q(x,2)))

? (P(1)∧(Q(1,1)∨Q(1,2)))∧(P(2)∧(Q(2,1)∨Q(2,2))) ? (F∧(T∨T))∧(T∧(F∨F))??F

(3) 举例说明下列各蕴含式。

a) ?((?x)(P(x)∧Q(a))? (?x)P(x)??Q(a)

b) (?x) (? P(x) ?Q(x)), (?x) ?Q(x)?P(a) c) (?x) (P(x) ?Q(x)), (?x) (Q(x) ?R(x))? (?x) (P(x) ?R(x)) d) (?x) (P(x) ?Q(x)), (?x) ?P(x)? (?x)Q (x) e)

(?x) (P(x) ?Q(x)), (?x) ?P(x)? (?x)Q (x) 解:a)因为?((?x)(P(x)∧Q(a)) ??(?x)P(x)∨?Q(a) 故原式为?(?x)P(x)∨?Q(a) ? (?x)P(x)??Q(a) 设P(x):x是大学生。Q(x):x是运动员 前提 或者不存在x,x是大学生,或者a是运动员 结论 如果存在x是大学生,则必有a是运动员。

b)设P(x):x是研究生。Q(x):x是大学生。a:论域中的某人。 前提:对论域中所有x,如果x不是研究生则x是大学生。

对论域中所有x, x不是大学生。

dintin@gmail.com

21

结论:对论域中所有x都是研究生。

故,对论域中某个a,必有结论a是研究生,即P(a)成立。

c)设P(x):x是研究生。Q(x):x曾读过大学。R(x):x曾读过中学。 前提 对所有x,如果x是研究生,则x曾读过大学。

对所有x,如果x曾读过大学,则x曾读过中学。

结论:对所有x,如果x是研究生,则x曾读过中学。 d)设P(x):x是研究生。Q(x):x是运动员。 前提 对所有x,或者x是研究生,或者x是运动员。

对所有x,x不是研究生

结论 必存在x,x是运动员。

e)设P(x):x是研究生。Q(x):x是运动员。 前提 对所有x,或者x是研究生,或者x是运动员。

对所有x,x不是研究生

结论 对所有x,x是运动员。

(4)证明:(?x)(A(x)→B(x))? (?x) (┐A(x)∨B(x)) ? (?x)┐A(x)∨ (?x) B(x) ? ┐(?x)A(x)∨(?x) B(x) ? (?x)A(x)→(?x) B(x)

(5) 设论域D={a,b,c},求证(?x)A(x)∨(?x)B(x)?( ?x)(A(x)∨B(x)) 证明:因为论域D={a,b,c},所以

(?x)A(x)∨(?x)B(x) ?(A(a) ∧A(b) ∧A(c)) ∨(B(a) ∧B(b) ∧B(c))

?(A(a) ∨B(a)) ∧(A(a) ∨B(b)) ∧(A(a) ∨B(c)) ∧(A(b) ∨B(a)) ∧(A(b) ∨B(b)) ∧(A(b)∨B(c)) ∧(A(c) ∨B(a)) ∧

(A(c) ∨B(b)) ∧(A(c) ∨B(c))

?(A(a) ∨B(a)) ∧(A(b) ∨B(b))∧(A(c) ∨B(c)) ?( ?x)(A(x)∨B(x))

所以(?x)A(x)∨(?x)B(x)?( ?x)(A(x)∨B(x)) (6)解:推证不正确,因为

┐(?x)(A(x)∧┐B(x))?┐((?x)A(x)∧(?x)┐B(x)) (7)求证(?x)( ?y)(P(x)→Q(y)) ? ( ?x)P(x)→(?y)Q(y) 证明:(?x)( ?y)(P(x)→Q(y)) ?(?x)( ?y)( ┐P(x) ∨Q(y)) ?(?x) ┐P(x) ∨( ?y)Q(y) ?┐(?x)P(x) ∨( ?y)Q(y) ? ( ?x)P(x)→(?y)Q(y)

习题2-6

(1)解:a) (?x)(P(x)→(?y)Q(x,y))

?(?x)( ┐P(x) ∨(?y)Q(x,y)) ?(?x) (?y) (┐P(x) ∨Q(x,y)) b)

(?x)(┐((?y)P(x,y))→((?z)Q(z)→R(x))) ?(?x)((?y)P(x,y)∨((?z)Q(z)→R(x))) ?(?x)((?y)P(x,y) ∨(┐(?z)Q(z) ∨R(x))) ?(?x)((?y)P(x,y) ∨((?z)┐Q(z) ∨R(x))) ?(?x) (?y) (?z) ( P(x,y) ∨┐Q(z) ∨R(x)) c)(?x)( ?y)(((?zP(x,y,z)∧(?u)Q(x,u))→(?v)Q(y,v)) ?(?x)( ?y)( ┐((?z)P(x,y,z)∧(?u)Q(x,u))∨(?v)Q(y,v)) ?(?x)( ?y)( (?z)┐P(x,y,z) ∨(?u)┐Q(x,u)∨(?v)Q(y,v)) ?(?x)( ?y)( (?z)┐P(x,y,z) ∨(?u)┐Q(x,u)∨(?v)Q(y,v))

dintin@gmail.com

22

?(?x)( ?y) (?z) (?u) (?v) (┐P(x,y,z) ∨┐Q(x,u)∨Q(y,v)) (2)解:a) ((?x)P(x)∨(?x)Q(x))→(?x)(P(x)∨Q(x))

?┐((?x)P(x)∨(?x)Q(x)) ∨(?x)(P(x)∨Q(x)) ?┐(?x) (P(x)∨Q(x)) ∨(?x)(P(x)∨Q(x)) ?T

b) (?x)(P(x)→(?y)((?z)Q(x,y)→┐(?z)R(y,x)))

?(?x)( ┐P(x) ∨(?y)( Q(x,y)→┐R(y,x))) ?(?x) (?y) ( ┐P(x) ∨┐Q(x,y) ∨┐R(y,x))

前束合取范式

?(?x) (?y)( (P(x) ∧Q(x,y) ∧R(y,x)) ∨(P(x) ∧Q(x,y) ∧┐R(y,x)) ∨ (P(x) ∧┐Q(x,y) ∧R(y,x)) ∨(┐P(x) ∧Q(x,y) ∧R(y,x)) ∨(┐P(x) ∧┐Q(x,y) ∧R(y,x)) ∨( (P(x) ∧┐Q(x,y) ∧┐R(y,x)) ∨(┐P(x) ∧Q(x,y) ∧┐R(y,x)))

前束析取范式 c)

(?x)P(x)→(?x)((?z)Q(x,z)∨(?z)R(x,y,z))

?┐(?x)P(x) ∨(?x)((?z)Q(x,z)∨(?z)R(x,y,z)) ?(?x)┐P(x) ∨(?x)((?z)Q(x,z)∨(?u)R(x,y,u)) ?(?x)(┐P(x) ∨(?z)Q(x,z)∨(?u)R(x,y,u)) ?(?x) (?z) (?u)(┐P(x) ∨Q(x,z)∨R(x,y,u))

前束合取范式

?(?x) (?z) (?u)(( P(x) ∧Q(x,z) ∧R(x,y,u)) ∨(P(x) ∧Q(x,z) ∧┐R(x,y,u)) ∨(P(x) ∧┐Q(x,z) ∧R(x,y,u)) ∨(P(x) ∧┐Q(x,z) ∧┐R(x,y,u)) ∨(┐P(x) ∧Q(x,z) ∧┐R(x,y,u)) ∨(┐P(x) ∧┐Q(x,z) ∧R(x,y,u)) ∨(┐P(x) ∧┐Q(x,z) ∧┐R(x,y,u)))

前束析取范式

d)(?x)(P(x)→Q(x,y))→((?y)P(y)∧(?z)Q(y,z))

?┐(?x)( ┐P(x) ∨Q(x,y)) ∨((?y)P(y)∧(?z)Q(y,z)) ?(?x)( P(x) ∧┐Q(x,y)) ∨((?u)P(u)∧(?z)Q(y,z)) ?(?x) (?u) (?z) (( P(x) ∧┐Q(x,y)) ∨(P(u)∧Q(y,z)))

前束析取范式

?(?x) (?u) (?z) (( P(x)∨P(u)) ∧ (P(x)∨Q(y,z)) ∧(┐Q(x,y)∨P(u)) ∧ (┐Q(x,y)∨Q(y,z)))

前束合取范式

习题2-7 (1) 证明:

(2) a) ①(?x)(┐A(x)→B(x)) P ②┐A(u)→B(u) US① ③( ?x)┐B(x) P ④┐B(u) US③ ⑤A(u)∨B(u) T②E ⑥A(u) T④⑤I

dintin@gmail.com

23

⑦ ( ?x)A(x) EG⑥

b) ①┐( ?x)(A(x)→B(x)) P(附加前提) ②( ?x)┐(A(x)→B(x)) T①E ③┐(A(c)→B(c)) ES② ④A(c) T③I ⑤┐B(c) T③I ⑥( ?x)A(x) EG④ ⑦ (?x)A(x)→(?x)B(x) P ⑧(?x)B(x) T⑥⑦I ⑨B(c) US⑧ ⑩B(c)∧ ┐B(c) T⑤⑨矛盾 c)①(?x)(A(x)→B(x)) P ②A(u)→B(u) US① ③( ?x)(C(x)→┐B(x)) P ④C(u)→┐B(u) US③ ⑤┐B(u) →┐A(u) T②E ⑥C(u)→┐A(u) T④⑤I ⑦(?x)(C(x)→┐A(x)) UG⑥ d) (?x)(A(x)∨B(x)),( ?x)(B(x)→┐C(x)),( ?x)C(x)? (?x)A(x) ①( ?x)(B(x)→┐C(x)) P ②B(u)→┐C(u) US① ③( ?x)C(x) P ④C(u) US③ ⑤┐B(u) T②④I ⑥ (?x)(A(x)∨B(x)) P ⑦A(u)∨B(u) US ⑧A(u) T⑤⑦I ⑨(?x)A(x) UG⑧ (2) 证明:

a)①( ?x)P(x) P(附加前提)②P(u) US① ③(?x)(P(x)→Q(x)) P ④P(u)→Q(u) US③ ⑤Q(u) T②④I ⑥(?x)Q(x) UG⑤ ⑦( ?x)P(x)→(?x)Q(x) CP b)因为(?x)P(x)∨(?x)Q(x)?┐(?x)P(x) →(?x)Q(x)

故本题就是推证(?x)(P(x)∨Q(x))?? ┐(?x)P(x) →(?x)Q(x) ①┐(?x)P(x) P(附加前提) ②( ?x)┐P(x) T①E ③┐P(c) ES② ④(?x)(P(x)∨Q(x)) P ⑤P(c)∨Q(c) ES④ ⑥Q(c) T③⑤I ⑦( ?x) Q(x) EG⑥ ⑧┐(?x)P(x) →(?x)Q(x) CP

dintin@gmail.com

24