材料科学基础经典习题及答案 联系客服

发布时间 : 星期五 文章材料科学基础经典习题及答案更新完毕开始阅读9585cfaf49649b6648d7477a

Gb2DGb?=[ln?E中心]?0=,b4?(1??)b4?(1??)G?b1?E中心4?(1??)E中心 ?ln???0?(A?ln?)A?4?(1??)?bGb式中

20. (1)晶体点阵也称晶体结构,是指原子的具体排列;而空间点阵则是忽略了原子的体积,而把它们抽象为纯几何点。 (2) 密排六方结构。 (3) 原子半径发生收缩。这是因为原子要尽量保持自己所占的体积不变或少变 [原子所占体积

3

VA=原子的体积(4/3πr+间隙体积],当晶体结构的配位数减小时,即发生间隙体积的增加,若要维持上述方程的平衡,则原子半径必然发生收缩。(4) 不能。因为位错环是通过环内晶体发生滑移、环外晶体不滑移才能形成。

(5) 外力在滑移面的滑移方向上的分切应力。(6) 始终是柏氏矢量方向。(7) 位错的交割。(8) 共格界面。(9) 否,扭转晶界就由交叉的同号螺型位错构成。 第二章

1. 说明间隙固熔体与间隙化合物有什么异同。

2.有序合金的原子排列有何特点?这种排列和结合键有什么关系?为什么许多有序合金在高温下变成无序?

xCd?42.5/10?23.已知Cd,Zn,Sn,Sb等元素在Ag中的固熔度(摩尔分数)极限分别为,

xSn?12/10?2xSb?7/10?2xZn?20/10?2,,,它们的原子直径分别为0.3042nm,0.314nm,

0.316nm,0.3228nm,Ag为0.2883nm。试分析其固熔度(摩尔分数)极限差别的原因,并计算它们在固熔度(摩尔分数)极限时的电子浓度。 4.试分析H、N、C、B在??Fe和??Fe中形成固熔体的类型、存在位置和固溶度(摩尔分数)。各元素的原子半径如下:H为0.046nm,N为0.071nm,C为0.077nm,B为0.091nm,??Fe为0.124nm, ??Fe为0.126 nm。

5.金属间化合物AlNi具有CsCl型结构,其点阵常数 a=0.2881nm,试计算其密度(Ni的相对原子质量为58.71,Al的相对原子质量为26.98)。

3Mg/m6. ZnS的密度为4.1,试由此计算两离子的中心距离。

?xC?8.9/10?2xN?10.3/10?2??7.碳和氮在Fe中的最大固熔度(摩尔分数)分别为,。已知C、

N原子均位于八面体间隙,试分别计算八面体间隙被C、N原子占据的百分数。

8.为什么只有置换固熔体的两个组元之间才能无限互溶,而间隙固熔体则不能?

??9.计算在NaCl内,钠离子的中心与下列各离子中心的距离(设Na和Cl的半径分别为0.097nm和0.181nm)。1)最近邻的正离子;2) 最近邻的离子;3)次邻近的Cl离子;4)第

-三邻近的Cl离子;5)最邻近的相同位置。

?2x?70/10LiF10. 某固熔体中含有氧化镁为,。1) 试问

Li?,Mg2?,F?,O2-之质量分数为多少?2) 假设MgO的密度为3.6g/cm3,LiF

3g/cm的密度为2.6,那么该固溶体的密度为多少?

-xMgO?30/10?211. 非晶形材料的理论强度经计算为G/6~G/4,其中G为剪切模量。若?=0.25,由其弹性

性质试估计玻璃(非晶形材料)的理论强度(已知E=70000Mpa)。

5

12. 一陶瓷绝缘体在烧结后含有1%(以容积为准)的孔,其孔长为13.7mm的立方体。若在制造过程中,粉末可以被压成含有24%的孔,则模子的尺寸应该是多少?

?2wC?62.1/10?2wO?27.6/10?2w?10.3/10H13. 一有机化合物,其成分为,,。试写出可能的化合物名称。

?CHOH?的4种可能的异构体。

14. 画出丁醇4920. 试述硅酸盐结构的基本特点和类型。

21. 为什么外界温度的急剧变化可以使许多陶瓷器件开裂或破碎?

22. 陶瓷材料中主要结合键是什么?从结合键的角度解释陶瓷材料所具有的特殊性能。 答案

1. 其比较如附表2.1所示。

附表2.1 间隙固溶体与间隙化合物的比较 类 别 间隙固熔体 间隙化合物 相 同 点 一般都是由过渡族金属与原子半径较小的C,N,H,O,B等非金属元素所组成 晶体结属于固熔体相,保持熔属于金属化合物相,形成不同不构 剂的晶格类型 于其组元的新点阵 同表达式 用α、β、γ等表示 用化学分子式MX,M2X等表示 点 机械性强度、硬度较低,塑性、高硬度、高熔点,甥性、韧性能 韧性好 差

2. 有序固熔体,其中各组元原子分别占据各自的布拉菲点阵——称为分点阵,整个固熔体就是由各组元的分点阵组成的复杂点阵,也叫超点阵或超结构。这种排列和原子之间的结合能(键)有关。结合能愈大,原子愈不容易结合。如果异类原子间结合能小于同类原子间结合能,即EAB < (EAA十EBB)/2,则熔质原子呈部分有序或完全有序排列。有序化的推动力是混合能参量(εm=εAB-1/2(EAA+EBB))εm < 0,而有序化的阻力则是组态熵;升温使后者对于自由能的贡献(-TS)增加,达到某个临界温度以后,则紊乱无序的固熔体更为稳定,有序固熔体消失,而变成无序固熔体。 3.在原子尺寸因素相近的情况下,上述元素在Ag中的固熔度(摩尔分数)受原子价因素的影响,即价电子浓度e/a是决定固熔度(摩尔分数)的一个重要因素。它们的原子价分别为2,3,4,5价,Ag为1价,相应的极限固熔度时的电子浓度可用公式c=ZA(1一xB)+ZBxB计算。式中,ZA,ZB分别为A,B组元的价电子数;xB为B组元的摩尔分数。上述元素在固溶度(摩尔分数)极限时的电子浓度分别为1.43,1.42,1.39,1.31。

4.Α-Fe为体心立方点阵,致密度虽然较小,但是它的间隙数目多且分散,因而间隙半径很小:r四=0.291,R=0.0361nm;r八=0.154,R=0.0191nm。H,N,C,B等元素熔人。α-Fe中形成间隙固熔体,由于尺寸因素相差很大,所以固熔度(摩尔分数)都很小。例如N在α-Fe中的固熔度(摩尔分数)在590℃时达到最大值,约为WN=0.1/l0-2,在室温时降至WN=0.001/l0-2;C在α-Fe中的固溶度(摩尔分数)在727℃时达最大值,仅为WC=0.02l8/10-2,在室温时降至WC=0.006/10-2。所以,可以认为碳原子在室温几乎不熔于α-Fe中,微量碳原子仅偏聚在位错等晶体缺陷附近。假若碳原子熔入。α-Fe中时,它的位置多在α-Fe的八面体间隙中心,因为。α-Fe中的八面体间隙是不对称的,形为扁八面体,[100]方向上间隙半径r=0.154R,而在[110]方向上,r=0.633R,当碳原子熔入时只引起一个方向上的点阵畸变。硼原子较大,熔人间隙更为困难,有时部分硼原子以置换方式熔人。氢在α-Fe中的固熔度(摩尔分数)也很小,且随温度下降时迅速降低。 以上元素在γ-Fe。中的固熔度(摩尔分数)较大一些。这是因为γ

6

-Fe具有面心立方点阵,原子堆积致密,间隙数目少,故间隙半径较大:rA=0.414,R=0.0522nm;r四=0.225,R=0.0284 nm。故上述原子熔入时均处在八面体间隙的中心。如碳在γ-Fe中最大固熔度(质量分数)为WC=2.1l/10-2;氮在γ-Fe中的最大固熔度(质量分数)约为WN=2.8/10-2。

3

5.密度ρ=5.97 g/cm。

6. 两离子的中心距离为0.234 nm。

7.碳原子占据10.2%的八面体间隙位置;氮原子占据12.5%的八面体间隙位置。

8.这是因为形成固熔体时,熔质原子的熔入会使熔剂结构产生点阵畸变,从而使体系能量升高。熔质与熔剂原子尺寸相差越大,点阵畸变的程度也越大,则畸变能越高,结构的稳定性越低,熔解度越小。一般来说,间隙固熔体中熔质原子引起的点阵畸变较大,故不能无限互溶,只能有限熔解。

9. (1)0.278 nm;(2)0.393 nm(3)0.482 nm;(4)0.622 nm;(5)0.393 nm。 10. (1)WLi+=16/10-2,WMg2+=24/1020,WF-=44/10-2,WO2—=16/10-2 (2)该固熔体的密度ρ=2.9 g/cm3。

0.4E0.4E~64之间,即4900~7000 MPa 11.故理论强度介于

12.模子的尺寸l=15.0 mm。 13.

C:H:O?62.110.327.6::?5.2:10.2:1.7?3:6:112.0111.0079715.994

故可能是丙酮。

14. 画出丁醇(C4H9OH)的4种可能的异构体如下:

20. 硅酸盐结构的基本特点:(1)硅酸盐的基本结构单元是[Si04]四面体,硅原子位于氧原子

四面体的间隙中。硅—氧之间的结合键不仅是纯离子键,还有相当的共价键成分。(2)每一个氧最多只能被两个[Si04]四面体所共有。(3)[Si04]四面体可以是互相孤立地在结构中存在,也可以通过共顶点互相连接。(4)Si—O--Si的结合键形成一折线。硅酸盐分成下列几类:(1)含有有限硅氧团的硅酸盐;(2)链状硅酸盐;(3)层状硅酸盐;(4)骨架状硅酸盐。

21.因为大多数陶瓷主要由晶相和玻璃相组成,这两种相的热膨胀系数相差较大,由高温很快冷却时,每种相的收缩不同,所造成的内应力足以使陶瓷器件开裂或破碎。

22. 陶瓷材料中主要的结合键是离子键及共价键。由于离子键及共价键很强,故陶瓷的抗压强度很高,硬度极高。因为原子以离子键和共价键结合时,外层电子处于稳定的结构状态,不能自由运动,故陶瓷材料的熔点很高,抗氧化性好,耐高温,化学稳定性高。 第三章

7

1.试述结晶相变的热力学条件、动力学条件、能量及结构条件。

2.如果纯镍凝固时的最大过冷度与其熔点(tm=1453℃)的比值为0.18,试求其凝固驱动力。(ΔH=-18075J/mol)

3. 已知Cu的熔点tm=1083℃,熔化潜热Lm=1.88×103J/cm3,比表面能σ=1.44×105 J/cm3。(1) 试计算Cu在853℃均匀形核时的临界晶核半径。(2)已知Cu的相对原子质量为63.5,密度为8.9g/cm3,求临界晶核中的原子数。 4. 试推导杰克逊(K.A.Jackson)方程

?Gs?ax(1?x)?xlnx?(1?x)ln(1?x)NkTm

5. 铸件组织有何特点?

6.液体金属凝固时都需要过冷,那么固态金属熔化时是否会出现过热,为什么?

33

7. 已知完全结晶的聚乙烯(PE)其密度为1.01g/cm,低密度乙烯(LDPE)为0.92 g/cm,而高密度乙烯(HDPE)为0.96 g/cm3,试计算在LDPE及HDPE中“资自由空间”的大小。 8.欲获得金属玻璃,为什么一般选用液相线很陡,从而有较低共晶温度的二元系? 9. 比较说明过冷度、临界过冷度、动态过冷度等概念的区别。 10.分析纯金属生长形态与温度梯度的关系。

11.什么叫临界晶核?它的物理意义及与过冷度的定量关系如何? 12.简述纯金属晶体长大的机制。 13.试分析单晶体形成的基本条件。 14.指出下列概念的错误之处,并改正。

(1) 所谓过冷度,是指结晶时,在冷却曲线上出现平台的温度与熔点之差;而动态过冷度是指结晶过程中,实际液相的温度与熔点之差。

(2) 金属结晶时,原子从液相无序排列到固相有序排列,使体系熵值减少,因此是一个自发过程。

(3) 在任何温度下,液体金属中出现的最大结构起伏都是晶胚。 (4) 在任何温度下,液相中出现的最大结构起伏都是核。

(5) 所谓临界晶核,就是体系自由能的减少完全补偿表面自由能的增加时的晶胚的大小。 (6) 在液态金属中,凡是涌现出小于临界晶核半径的晶胚都不能成核,但是只要有足够的能量起伏提供形核功,还是可以成核的。

(7)测定某纯金属铸件结晶时的最大过冷度,其实测值与用公式ΔT=0.2Tm计算值基本一致。 (8) 某些铸件结晶时,由于冷却较快,均匀形核率N1提高,非均匀形核率N2也提高,故总的形核率为N= N1 +N2。

(9)若在过冷液体中,外加10 000颗形核剂,则结晶后就可以形成10 000颗晶粒。

2?3cos??cos3?()4(10) 从非均匀形核功的计算公式A非=A均中可以看出,当润湿角θ=00时,

非均匀形核的形核功最大。

(11) 为了生产一批厚薄悬殊的砂型铸件,且要求均匀的晶粒度,则只要在工艺上采取加形核剂就可以满足。

(12) 非均匀形核总是比均匀形核容易,因为前者是以外加质点为结晶核心,不象后者那样形成界面,而引起自由能的增加。

(13) 在研究某金属细化晶粒工艺时,主要寻找那些熔点低、且与该金属晶格常数相近的形核剂,其形核的催化效能最高。

8