某水利枢纽工程大坝安全监测资料分析报告 联系客服

发布时间 : 星期六 文章某水利枢纽工程大坝安全监测资料分析报告更新完毕开始阅读9591d7f9941ea76e58fa046c

黄河在坝址区呈南北向,河谷呈宽U型,宽约430m。坝基座落在寒武系中统张夏组第五层的中厚层灰岩夹薄层灰岩上,两岸坝肩地层为寒武系上统崮山组、长山组和凤山组的中厚层灰岩、薄层灰岩、竹叶状灰岩等地层。

坝基地层呈单斜构造,岩层产状平缓,总体走向北东30°,倾向西北,倾角2°~3°。在平缓单斜地层上发育有规模不大的层间褶曲、隆起及裂隙。 1.2 监测项目及布置

本工程大坝观测项目有:变形观测;渗流观测;应力、应变及温度观测;水位、水温、气温观测;水力学观测。

1.2.1变形观测

(1)坝顶水平位移监测。坝顶水平位移观测采用视准线法和大气激光准直线法,布置桩号分别为下0+017.185m和0+017.51m,两种方法互为校核,两端点由设置在1#、22#坝段的正、倒垂线组作为基点。

(2)坝身水平位移监测。在高程975.00m的观测廊道内桩号下0+013.45m处布置一条单向引张线,两端点与1#、22#坝段的正、倒垂线组相结合,中间与7#、14#坝段的正、倒垂线组相结合。

1.2.2垂直位移监测

(1)坝顶垂直位移监测。在每个坝段的坝顶上埋设一个沉陷标点,采用精密水准测量方法进行观测。

(2)坝基垂直位移监测。在灌浆廊道内每个坝段埋设一个沉陷标点,采用精密水准测量方法进行观测。

1.2.3坝体挠度监测

在1#、7#、14#、22#坝段各布置一条正、倒垂线组观测坝体挠度,并为大坝变形观测提供基准值。倒垂线深入基岩深度:1#坝段为42m;7#坝段为30.9m;14#坝段为35m;22#坝段为45m。

1.2.4坝基倾斜监测

在14#坝段灌浆及扬压力观测廊道内,桩号坝0+323.80m、高程898.50m处顺流向安装三台RJ型电容式静力水准仪,并以14#坝段倒垂线作为基点。

1.2.5坝基扬压力监测

选择2#、5#、11#、14#、20#坝段5个横向监测断面,每个断面布置4个以上监测孔,纵向监测断面选在灌浆廊道内,每个坝段布置1个监测孔,另在6#、10#、15#、18#坝段

2

布置4个深层承压水监测孔,共布置59个扬压力监测孔。

1.2.6绕坝渗流监测

在左右岸各布置8个监测孔,监测绕坝渗流情况。 1.2.7渗漏量监测

(1)坝体渗漏量监测。在灌浆廊道上游排水沟内于9#、15#坝段集水井的左右两侧各布置1台YL型电容式量水堰渗流量仪,共4台。

(2)坝基渗漏量监测。在灌浆廊道下游排水沟内于9#、15#坝段集水井的左右两侧各布置了1台YL型电容式量水堰渗流量仪,以监测主排水孔的渗漏量,共4台。

1.2.8应力、应变及温度监测

(1)温度监测。在5#、14#、21#三个典型坝段内,依高程不同,每隔10~15m布设一排温度计,每排3~5个测点进行坝体温度观测;在坝踵、坝趾及坝基中部,沿铅直方向在基岩内距建基面0.0、1.5、3.0、5.0m各布置一支电阻温度计进行基岩温度监测。

(2)纵横缝开合度监测。在典型坝段的各条纵、横缝及左右岸坡坝段的横缝上布置测缝计,监测缝面开合度变化情况。

(3)坝体渗透压力、泥沙压力监测。在5#、14#坝段观测断面高程904.50m和906.00m布置两排10支渗压计,与坝面的距离为0.25、1.05、2.55、4.55、7.65m;在5#、14#坝段高程948.00m以下,每隔10m左右布置一对土压力计和一支渗压计。

(4)坝体应力、应变监测。在典型坝段的基础截面布置五向应变计组、无应力计,以监测该截面的应力应变;在坝踵部位埋设应变计、测缝计进行应力应变和缝面变化监测;在岸坡坝段布置单向应变计及基岩变位计监测坝肩的受力和变形情况。

(5)钢筋应力监测。在5#坝段底孔孔口、闸墩及9#坝段排水泵房等部位布置钢筋计进行钢筋应力监测。

(6)压力钢管监测。在14#电站坝段压力钢管的上弯段、斜直段及下弯段截取三个垂直于钢管轴线的剖面,在每个剖面的上下、左右侧布置钢板计、钢筋计、测缝计、渗压计、应力计及无应力计对压力钢管的工作状态进行监测。

1.2.9水位、水温、气温监测

(1)水位监测:大坝在水库下闸蓄水前采用上下游水尺进行水位监测,电站机组投入运行后利用19#坝段及电站尾水平台的水位计进行监测。

(2)水温监测:选择上游坝面作为监测断面,利用5#、14#、22#坝段布置的电阻温度计进行水温监测。

3

(3)气温监测:利用坝址附近即左岸山体上游侧和右岸坝段布置的两个气温观测点,安装百叶箱,采用电阻温度计进行气温监测。

1.2.10坝基抗剪平硐应力应变监测

(1)应力应变监测:在3条坝基抗剪平硐内共埋设20套五向应变计组和无应力计,以监测平硐混凝土内应力状况。

(2)温度监测:在平硐内共埋设温度计63支,进行回填混凝土温度监测。 (3)周边回填缝开度监测:在3条平硐及部分支硐内选择10个观测断面,每个断面分别在两侧及顶部各布置1支测缝计,共计30支,以监测周边回填缝的开合度。

(4)剪切带变形监测:在平硐内SCJ08、SCJ10剪切带上各埋设6套3DM-200型三向测缝计,共计12套。

万家寨水利枢纽工程大坝安全监测测点及仪器布置见图1-1~图1-10。

2 变形观测资料分析

2.1荷载因素分析

2.1.1水位荷载

本工程1998年10月1日下闸蓄水,1998年11月25日到达施工初期运行水位960.00m。至2001年5月底,水库库水位在929.50m至974.54m之间变动,其中2000年3月24日水位降至最低,为929.50m;2001年4月17日水位升至最高,为974.54m。在此期间,库水位主要经历了4次大幅度的变化,分别是1998年10月的蓄水过程,1999年3月和2000年3月库水位的降升过程,2001年3、4月的库水位升高过程。库水位变化过程线见图2-1。

水荷载是坝体及坝基变形的主要影响因素之一。理论分析表明,坝体变形可以用水位的1~4次方表示,本次回归计算分析采用h、h2、h3、h4作为水位分量的因子(其中,h=H/100,H为测时当天的平均库水位)。从回归计算所得的统计模型看,现有变形监测项目的部分测点的实测值统计模型中没有引入水位因子,其原因与大坝前期尚处于边建设边运行之中,观测资料相对较短,而其它因素(如温度、时效等)对大坝变形的影响较水荷载相对明显有关。为弥补现有资料相对较短,并利用有限元计算结果求出水位与外部变形的关系方程,将此方程作为一个因子,结合实测资料,建立了外部变形混合模型。有限元计算及分析详见2.3节。

2.1.2温度荷载

气温是影响坝体运行状态的重要外部条件,对坝上、下游水温、坝体混凝土温度、

4

坝基温度有直接影响,从而影响到坝的变形、应力、渗透等。

万家寨水利枢纽坝址地处北纬39.6°,该地区属温带季风大陆性气候,冬季寒冷且时间漫长,气候干燥,多风沙;夏季炎热;春、秋季短。气温年、季及昼夜变化大,骤降频繁。统计资料表明,本工程所在地区,一年四季均有寒潮发生,且寒潮降温幅度大,覆盖时间长。

实测枢纽工程区气温变化过程线见图2-2。因气温资料仅到2001年3月21日,为使环境量相对完整,便于回归分析,对此后4、5两个月的气温,用2000年同期的资料进行补充。根据1995年12月9日至2001年3月31日每天平均气温的统计,在此时段内坝址处最高气温出现在1998年6月29日,最高气温为32.8℃;最低气温出现在1998年1月18日,最低气温为-21.9℃。

在进行坝体变形回归分析时,根据本工程的实际情况,采用了两类温度分量因子:一类为前期平均气温因子,包括T7、T15、T30、T60、T90、T120等(下标表示所取测时前的天数);一类为周期因子,包括sin(s)、sin2(s)、cos(s)、cos2(s)和sin(s)·cos(s),其中,s=2πt′/365,t′为测时距分析起始日期的时间长度(天)。变形测点实侧值回归议程中送入的年周期、半年周期和测时前期气温平均因子不全相同,反映了因测点位置不同,受温度边界条件影响(气温、水温)程度的不同。 2.2变形观测资料的整理与分析

本次资料分析中,位移方向按常规设定为:水平位移向下游及向左岸位移为正,上下游方向为纵轴Y,左右岸方向为横轴X;垂直位移向下为正。

2.2.1数据可靠性检查及精度估计方法

在进行观测资料的整理分析前,对观测数据进行了可靠性检查,并对其中不可避免地存在的以下三类误差分别进行了处理。

(1)疏失误差(人工误差):是指由于观测人员的疏忽而产生的误差,如仪器操作错误、记录错误、计算错误、计算机输入错误等。本次分析工作开始时,大坝观测自动化系统尚未投入正常运行,分析采用的所有资料均为人工观测、人工计算后输入到计算机,所以资料中疏失误差难以避免。因此,在资料分析前,对原始记录进行了大量的复核,对明显的疏失误差进行了插值补缺或非真值剔除。

(2)系统误差:是指由于观测设备、仪器、操作方法不完善或外界条件变化所引起的一种有规律的误差,如电缆接长或剪短、电缆接头硫化处理不当、不同测时更换测量仪器等,其可能的形式较为复杂,比疏失误差难于发现和处理。对这种误差,首选将

5