轨道交通70%低地板 联系客服

发布时间 : 星期六 文章轨道交通70%低地板更新完毕开始阅读966dd63887c24028915fc3ee

3.1 独立车轮常规转向架方案

3.1.1 双铰三车体型式

图4给出了使用独立车轮常规转向架的70%低地板轻轨车辆的双铰三车体型式。它由端部的两个长车体A、C和中间的一个短车体B组成,在中间的短车体下面放置独立车轮拖车转向架。设置中间短车体的目的:一方面是为了减小通过小半径曲线时车体端部的偏移量以适应限界;更重要的是减小相邻车体对独立车轮转向架的转动影响,从而减小轮对的冲角。

这种双铰三车体型式,每个单独车体都不是静定的,两个车体模块之间需要上、下铰连接才能形成静定结构。连接铰具有以下几种型式:①固定铰,限制三个方向的平动,但能绕三个

方向旋转,能承受垂向力,传递大部分的纵向力和横向力,一般用于下铰;②自由铰,仅限制相邻车体间的侧滚运动,一般用于上铰;③转动铰,限制纵向和横向的平动,不限制垂向的平动和三向转动,也不承受垂向力,一般也用于上铰。图5给出了德国HUBNER公司生产的几种铰接机构。

对于双铰三车体型式,在车体A、B之间需要设置一个固定铰和一个转动铰,这使得车体A、B在垂向上是刚性的,不能绕x、y轴转动,仅能绕z轴转动。在车体B、C之间则设置一个固定铰和一个自由铰,车体B、C绕y轴可以转动,以适应竖曲线。为了抑制车体间的晃动,需要在铰接处提供一定的纵向和横向阻尼。

双铰三车体的主要缺点是:由于编组的车体长度不均匀,因而在通过小半径曲线时端部车体的横向偏移量较大,为了满足限界要求,A、C车体的端部必须适度削尖;通过小半径曲线时,由于端部转向架相对车体的转角较大,使得高地板处的动力转向架必须设计成有摇枕型式。

我国的大连市以及湘潭电机厂和唐山机车车辆厂先后试制成功了这种双铰三车体型式的70%低地板车辆。

3.1.2 模块化车体型式

克服双铰三车体缺点的方法是采用五车体型,如图6所示。将三车体型式中的长车体改为两个短车体;两端部的短车体A、F下面设置动力转向架,中间的浮动车体B、D通过连接铰与端部车体和中间车体C连接。显然,五车体型式通过曲线时车体的横移量大大减小,车体端部基本上不用削尖。五车体型式的另一个好处是:高地板处的动力转向架可以采用无摇枕型式,这简化了动力转向架的设计。

五车体型式符合轻轨车辆模块化的发展趋势。模块化是指:将车辆的各部件如动力转向架、拖动转向架、前端车体、浮动车体、中间车体、铰接部等进行标准化设计;然后根据需要灵

活地调整车辆编组形式,以适应客户对客流量的需求,从而最大限度地降低造价。图7给出了模块化的七车体结构型式。

3.2 独立车轮自调节走行部方案

图8为由德国Frederich教授开发的独立车轮单轴(自调节)走行部[4]。它的左、右独立车轮能够绕构架外侧各自的回转中心旋转,因而可以由重力复原力产生一个绕垂直轴的复原力矩。这一力矩能够驱使独立车轮自动地进行调节复位,使车轮自动地处于径向位置。通常把这种只依靠轮轨间作用力而使车轮回复到径向位置的独立车轮单轴走行部称为独立车轮自调节走行部(简称EEF)。图9给出了使用自调节走行部的低地板车辆的型式。

独立车轮自调节走行部的主要缺点是运动部件多、结构复杂、制造要求高。由于回转轴存在一定的摩擦力,只有当轮副偏转一定角度后才能克服该摩擦力的影响,这造成了轮缘磨耗。与所有的独立车轮转向架一样,它需要配置高性能的防滑器,以避免制动时左、右车轮纵向蠕滑力不相等而引起轮缘贴靠钢轨。

3.3 独立车轮迫调节转向架方案

3.3.1 耦合转向架

独立车轮耦合转向架是一种具有径向性能的新型转向架,其结构原理如图10所示:将前后车体相邻的两个独立车轮单轴转向架用耦合弹性元件连接起来,通过合理选择耦合弹簧的摇头刚度,单轴转向架就能在二系悬挂弹簧和耦合弹簧的作用下自动调节轮对趋于径向位置,实现了轮对的径向导向[5]。