Gd19+离子双电子复合过程的理论研究-fyb资料 联系客服

发布时间 : 星期四 文章Gd19+离子双电子复合过程的理论研究-fyb资料更新完毕开始阅读98a356890408763231126edb6f1aff00bed5700a

103-1-8DR-DAC-4dDR-DAC-total (n'=4-1000)Rate coefficients/cms10-9Gd19+DR-NDACDR-DACDR-Ref.RRDR-DAC-4pDR-DAC (n'=24-1000)DR-RS+NRS10-1010-11TBR10-12110100kTe/eV100010000

图7 Gd离子DR, RR, TBR速率系数. 曲线DR-DAC-4d和DR-DAC-4p分别为4d和4p电子激发的考虑了DAC效应的DR速率系数. 曲线DR-DAC-4d, DR-DAC-4p, DR-DAC,DR-RS+NRS以及DR-NDAC为j = ( 4p64d9)-1nln'l' (n = 4-6, n' = 4-23)的DR速率系数, 利用FAC程序从头计算

19+

得到.

Figure 7 DR, RR and TBR rate coefficients for Gd19+ ions. Curves DR-DAC-4d and DR-DAC-4p are the DR rate coefficients for 4d and 4p subshell excitations including DAC transitions respectively. Curves DR-DAC-4d, DR-DAC-4p, DR-DAC, DR-RS+NRS and DR-NDAC are ab initio level-by-level DR rate coefficients for j = ( 4p64d9)-1nln'l' (n = 4-6,n' = 4-23) using FAC.

5 总 结

本文详细研究了Gd19+离子的DR过程. 以基态作为初态, 考察了激发、辐射通道, DAC效应对DR速率系数的贡献, 以及DR速率系数随高n电子轨道角动量的变化. 其中, 4s电子激发的贡献可以忽略. 4d电子激发至7l及更高壳层的贡献可以忽略, 辐射跃迁至8l及更高壳层的贡献可以忽略.高n电子轨道角动量, l’ > 11的贡献可以忽略. 在温度?Te<20eV区域, DAC效应对DR速率系数没有影响, 在90eV处DAC增大了DR速率系数1.5%. 之后随着温度的增高, 影响逐渐增大. 在280eV处, 增大总DR速率系数3.3%, 在50000eV处增大4.1%. 由于级联退激中Auger退激速率较大,考虑高里德堡电子辐射跃迁而不考虑级联退激, 在40eV处对DR速率系数有4.5%的增大, 并且随着温度的增大, 影响逐渐增大, 在50000eV处增大到70.7%. 对DR, RR, TBR速率系数做了比较, 在全温度范围DR都大于RR和TBR速率系数, 相应的DR过程对于等离子体离化态分布和能级布居以及光谱模拟都极为重要. 为方便应用, 分别对基态和第一激发态作为初态的总DR速率系数进行了参数拟合, 拟合公式为:

?DR(?Te)?(?Te)?3/2?ceii?16?Ei/?Te. (6)

对于基态作为初组态的DR速率系数拟合结果, 在温度为1000eV处, 拟合偏差为1.54%, 1500eV处为1. 6%. 其他数据点处的拟合偏差都小于1.0%. 对于第一激发态作为初组态的DR速率系数拟合结果, 在温度为1000eV处, 拟合偏差为1.3%, 1500eV处为1.1%, 其他数据点处的拟合偏差都小于1.0%.

9

表1 Gd19+离子DR速率系数参数拟合. M[N]代表M×10N. Table 1 Fitting DR rate coefficients for Gd19+ ions. M[N] denote M×10N.

基态 第一激发态

ci 1. 543[-7]

2. 860[-6] 3. 866[-6] 2. 305[-8] 6. 498[-8] 5. 802[-7]

Ei 1. 889 2. 665 1. 289 1. 041 5. 427 4. 756

ci 1. 296[-7] 1. 449[-8] 3. 696[-6] 2. 827[-6] 4. 251[-7] 4. 644[-8]

Ei 17. 379 1. 201 234. 870 114. 165 42. 780 5. 901

i 1 2 3 4 5 6

参 考 文 献

[1]Schippers S,Bernhardt D,Grieser M,et al.Recombination of Au20+ at low electron–ion collision energies.Phys Scr,2011,144,014039

[2] Ballance1 C P, Griffin D C, Loch S D,et al. Dielectronic recombination of Au20+:a theoretical description of the resonances at low electron energies.J Phys B: At Mol Opt Phys,2012,45,045001 [3] Badnell N R, Ballance C P, Griffin D C,et al.Dielectronic recombination of W20+ (4d104 f8): Addressing the half-open f shell.Phys Rev A,2012,85,052716-9 [4] Schippers S, Bernhardt D, Müller A,et al, Dielectronic recombination of xenonlike tungsten ions.Phys Rev A,2011,83,012711-6

[5]Song M Y,Kato T,Kato D,et al.Total and partial dielectronic and radiative recombination of Xe10+

ions.J Phys Soc Jpn,2008,77,064302

[6]Safronova U I,Bista R, Bruch R,et al. Dielectronic recombination of the Xe8+ ion and satellite lines of the Xe7+ ion.J Phys B: At Mol Opt Phys,2009,42,015001

[7] Fu Y B, Dong C Z, Su M G. Theoretical investigation of dielectronic recombination of Sn12+ ions. Phys Rev A,2010,83,062708-5

[8] Fu Y B, Dong C Z, Su M G, et al. Dielectronic recombination of Sn10+ ions and related satellite spectra *.China-Phys Lett,2008,25(3):927-929

[9] Sullivan G O,Faulkner R. Tunable narrowband soft x-ray source for projection lithography.Opt Eng,1994,33(12):3978-3983

[10]Kilbane D,Sullivan G O. Extreme ultraviolet emission spectra of Gd and Tb ions.In: J Appl Phys.2010,108 (10): 104905-1-104905-5

[11] Li B W,Sullivan G O,Fu Y B, Dong C Z, Dielectronic recombination of Rh-like Gd and W.Phys Rev A,2012,85,052706-7

[12]Li B W,Sullivan G O,Fu Y B,et al.Dielectronic recombination of Pd-like gadolinium.Phys Rev A,2012,85,012712-10

[13] Fu Y B, Wang X D, Su M G, et al. Theoretical studies of dielectronic recombination for Au34+ ions (in Chinese). Acta Phys Sin,2016,65,033401-033407

符彦飙,王旭东,苏茂根. Au34+离子双电子复合过程的理论研究.物理学报,2016,65,033401-033407

[14] Meng F C, Chen C Y, Shi X H,et al. Dielectronic recombination of Co-like gold ions.J Phys B:At Mol Opt Phys,2007,40,4269-4286

[15]Gu M F.The flexible atomic code.Can J Phys,2008,86,675-689

[16]Ivanova E P.Atomic Data and Nuclear Data Tables.Russia: Atomic Data and Nuclear Data Tables,2009.786–804

Theoretical studies of dielectronic recombination rate coefficients for Rh-like Gd ions

10

Yanbiao Fu

1)

1)2)

, Rui Tian

1)2)

, Erlong Wei

1)2)

, Xudong Wang

1)2)

and Chenzhong Dong

1)2)

Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070,China 2)

Joint Laboratory of Atomic and Molecular Physics, Northwest Normal University and Institute of Modern Physics of Chinese Academy of Sciences, Lanzhou 730070, China

Abstract

Dielectronic recombination ( DR) rate coefficients of complex ions are very important in some application research, such as extreme ultraviolet lithography and nuclear fusion. Theoretical calculations are made for dielectronic recombination rate coefficients of Gd19+ ions using a flexible relativistic atomic code. Influence of inner-shell electron excitation,radiative channels, the effect of decays to autoionizing levels possibly followed by radiative cascades (DAC) and orbital angular momentum of high n electron on DR rate coefficient are analyzed. The contributions of 4p electron excitation and DAC can not be neglected. The total DR rate coefficient is greater than either the radiative recombination or three-body recombination coefficients for electron temperatures greater than 1 eV. The total DR rate coefficients for the ground state and the first excited state are fitted to an empirical formula. These results should be useful for further analyses of DR process for Gd19+ and other complex structures ions.

Keywords: dielectronic recombination, rate coefficient, DAC effect PACS:34. 50. Fa, 34. 80. Gs

11