TALEN ZNF CRISPR - 图文 联系客服

发布时间 : 星期六 文章TALEN ZNF CRISPR - 图文更新完毕开始阅读a55246bf580216fc710afd5c

的振奋人心的科研成果相继发表在高水平杂志上,如使患有人血液疾病乙型血友病

(hemophilia B)的小鼠恢复血液凝结功能;在干细胞领域,研究者使用ZFN技术精确修正基因突变,从而使与人体疾病相关的缺陷蛋白失活等。 3.ZFN技术的缺陷

ZFN技术虽然简易实用,但也具有一定缺陷。ZFN对DNA的剪切需要两个FokI切割区域的二聚化,并且需要至少一个识别单元结合DNA。DNA识别域虽然具有较强的特异性识别能力,但由于ZFN剪切的过程并不完全依赖同源二聚体的形成,所以一旦形成异源二聚体,就很可能造成脱靶效应,并最终可能导致DNA的错配和序列改变,产生较强的细胞毒性。当这些不良影响积累过多,超过细胞修复机制承受的范围时,便会引起细胞的凋亡。另一方面,该手段仍然受到现有生物学领域研究手段的限制,因此在细胞内部操作的精确程度和后果都较难预料。如果ZFN引起相关基因突变,则可能会导致一系列意想不到的后果,在与人体相关的应用领域,甚至可能引发癌症。另外,ZFN作为基因治疗的手段之一,如果在生物体内使用,可能会引发免疫反应。现有的研究手段尚不能预测引入的ZNF蛋白是否会引起免疫系统的进攻。并且到目前为止,ZFN技术只能用于体外操作(in vitro),在对人体提取的细胞进行处理之后,再导入回输到病人体内。而直接向患者体内导入相关ZFN元件进行基因编辑处理则具有较大的潜在风险,且效率不高。以上诸多限制导致人体相关的ZFN操作较为繁琐,难以推广应用。

三、CRISPR/Cas系统

不论是TALEN技术还是ZFN技术,其定向打靶都依赖于DNA序列特异性结合蛋白模块的合成,这一步骤非常繁琐费时。而CRISPR/Cas技术作为一种最新涌现的基因组编辑工具,能够完成RNA导向的DNA识别及编辑。CRISPR/Cas技术使用一段序列特异性向导RNA分子(sequence-specific guide RNA)引导核酸内切酶到靶点处,从而完成基因组的编辑。CRISPR/Cas系统的开发为构建更高效的基因定点修饰技术提供了全新的平台。 1.CRISPR/Cas系统元件与特征

CRISPR/Cas系统最早是在细菌的天然免疫系统内发现的,其主要功能是对抗入侵的病毒及外源DNA。1987年大阪大学(OsakaUniversity)的研究人员在E.coliK12的碱性磷酸酶基因附近发现了成簇的规律间隔的短回文重复序列(Clustered regularly interspaced short palindromic repeat, CRISPR),其结构如图10所示,目前普遍认为有40%的细菌基因组具有这样的结构。

图10 CRISPR的结构(以嗜热链球菌LMD-9基因组CRISPR1/Cas系统的位点为例)。(上)Cas基因由蓝色表示,包括广泛存在的cas1和cas2,II类系统特征基因cas9和csn2。重复间隔物阵列(CRISPR)由

黑色表示。(下)CRISPR的重复序列(repeat)和间隔物序列(spacer)分别用黑色菱形、灰色长方形表示。缩写:L,前端;T,末端重复;数字代表间隔物序列被获取的顺序。图片来源:Rodolphe Barrangou1 and Philippe Horvath. (2012) CRISPR: New Horizons in Phage Resistance and Strain Identification. Annual Review of Food Science, 3: 143-162.

CRISPR/Cas系统由CRISPR序列元件与Cas基因家族组成。其中CRISPR由一系列高度保守的重复序列(repeat)与同样高度保守的间隔序列(spacer)相间排列组成。而在CRISPR附近区域还存在着一部分高度保守的CRISPR相关基因(CRISPR-associated gene, Cas gene),这些基因编码的蛋白具有核酸酶活性的功能域,可以对DNA序列进行特异性的切割。

2. CRISPR/Cas系统工作原理

CRISPR/Cas作为原核生物中普遍存在的一种系统,最初的功能就是识别外源性入侵的核酸序列,并对其进行特异性降解,以达到抗病毒的作用。这一过程分两步进行——crRNA的合成及在crRNA引导下的RNA结合与剪切,具体机制如图11所示,包含crRNA的生物学合成和RNA的结合与剪切两大步骤。

图11 CRISPR抗病毒运行机制。(上)crRNA和Cas蛋白的生物学合成:Cas基因转录为mRNA,随后翻译为Cas蛋白,Cas蛋白可以形成CASCADE复合体(抗病毒防御的CRISPR相关复合体)。CRISPR重复间隔物阵列转录为全长的前体crRNA(pre-crRNA),随后经过加工成为crRNA。这些crRNA包含部分的重复间隔序列。(下左)间隔物(spacer)获取:噬菌体的原间隔物序列,一般在PAM(原间隔物模块)的旁边,可由Cas蛋白识别,并产生一个新的重复间隔物单元,插在原有的重复间隔物阵列前端。(下右)干扰:由crRNA介导的CASCADE核糖核蛋白复合体识别入侵的同源序列,在PAM附近的原间隔物序列处将这些双链DNA(dsDNA)截断。图片来源:Rodolphe Barrangou1 and Philippe Horvath. (2012) CRISPR: New Horizons in Phage Resistance and Strain Identification. Annual Review of Food Science, 3: 143-162.

2.1 crRNA的生物学合成

CRISPR区域第一个重复序列上游有一段CRISPR的前导序列(Leader sequence),该序列作为启动子来启动后续CRISPR序列的转录,转录生成的RNA被命名为CRISPRRNA(简称crRNA)。 2.2 RNA的结合与剪切

CRISPR/Cas系统中crRNA与tracrRNA(反式激活的crRNA)形成嵌合RNA分子,即单向导RNA(Single guide RNA,sgRNA)。sgRNA可以介导Cas9蛋白在特定序列处进行切割,形成DNA双链断裂(Double-Stranded Break, DSB),完成基因定向编辑等的各类操作。

3. 不同类型的CRISPR/Cas系统

根据功能元件的不同,CRISPR/Cas系统可以分为I类系统、II类系统和III类系统。这三类系统又可以根据其编码Cas蛋白的基因不同而分为更多的亚类。不同类型CRISPR/Cas系统完成干扰的步骤也有所不同(图12)。

图12 三种不同的CRISPR/Cas干扰系统作用步骤。CRISPR/Cas系统根据分类有三种,其共同特点是都具有DNA区域(蓝色)、靶向crRNA(红色)和原间隔物模块(PAM,绿色)。在I类系统(A)中,入侵的DNA有Cascade:crRNA复合体识别,PAM模块则能促进外源性DNA的识别,随后核酸酶Cas3被募集并将目标DNA降解。在II类系统(B)中,只需要单独的Cas9蛋白即可完成干扰,并不依赖一个多蛋白复合体,Cas9和反式激活的crRNA(tracrRNA)、前crRNA(pre-crRNA)形成复合体,该复合体促使RNA酶III将前crRNA加工为成熟的crRNA。在III类系统(C)中,一个多蛋白复合体(Csm或Cmr)或Cas6促进前crRNA转化为成熟的crRNA,最终导致目标DNA的降解。图片来源:Hagen Richter, Lennart Randau and André Plagens. (2013) Exploiting CRISPR/Cas: Interference Mechanisms and Applications. International Journal of Molecular Science, 2013, 14, 14518-14531.

I类和III类CRISPR/Cas系统进行干扰时只需要crRNA和Cas蛋白两种元件的参与,而II类CRISPR/Cas系统包括crRNA、tracrRNA和Cas蛋白三种元件。其中II类CRISPR/Cas系统最先在改造后用于小鼠和人类基因组编辑,同时也是目前研究最为充分的系统。根据Cas蛋白的类型不同分为三个亚类:II-A类含有Cas1、Cas2、Cas9和Csn2样蛋白;II-B类含有Cas1、Cas2、Cas4和Csx12样Cas9四种蛋白;II-C类则有Cas1、Cas2及Cas9三种蛋白。此外,II类CRISPR/Cas系统也是目前最常用于人工基因组编辑的CRISPR/Cas系统,其靶向基因组编辑的步骤如图13所示。

图13 利用一段小向导RNA(sgRNA):Cas复合体系统靶向基因组编辑的步骤。将编码密码子优化的Cas9(红色)序列、一段核定位序列(NLS)和一段包括目标靶序列的小向导RNA(sgRNA,黄色)序列同时构建在一个质粒中,再将质粒转染进目标细胞。一个有功能的sgRNA:Cas9干扰复合体会在细胞内完成组装,该复合体会在PAM结构的上游目标DNA序列上诱导产生一个双链断裂(DSB),而DSB则能被宿主细胞的DNA修复系统、同源重组系统(HR)和非同源末端连接途径(NHEJ)修复。HR系统以宿主的等位基因为模板复原野生型序列,将序列恢复为断裂前的状态;而容易出错的NHEJ系统则会在目标位点(灰色)引入插入和删失。使用一段合成的供体DNA模板与Cas系统质粒共转染,可以诱导HR(蓝色),提高编辑效率。图片来源:Hagen Richter, Lennart Randau and André Plagens. (2013) Exploiting CRISPR/Cas: Interference Mechanisms and Applications. International Journal of Molecular Science, 2013, 14, 14518-14531.

4. CRISPR技术的应用

自1987年大阪大学(Osaka University)的研究人员在细菌的天然免疫系统中发现

CRISPR/Cas系统以来,CRISPR作为一种潜在技术在很长时间内都没有得到重视与发展。近年来,由于基因工程技术的突飞猛进,CRISPR/Cas俨然已经成为科学界最炙手可热的热点之一,被广泛应用于各类体内和体外体系的遗传学改造、转基因模式动物的构建,甚至基因治疗领域。