计算机通信与网络课后习题答案 联系客服

发布时间 : 星期三 文章计算机通信与网络课后习题答案更新完毕开始阅读add2bb7b27284b73f3425007

什么帧,该控制段表示什么含义? 答:

HDLC协议中的控制字段从高位到低位排列为11010001,即最低两位

(b1b0)为“01”,表示是监督帧。其控制字段b3b2为“00”,表示是

“RR”,接收准备好,可以继续发送。P/F=1,N(R)=110,表示对第5号帧及以前各帧确认,希望下一次接收第6号帧。

3.16 HDLC协议的帧格式中的第三字段是什么字段?若该字段的第一比特为“0”,则该帧为什么帧? 答:

HDLC协议的帧格式中的第三字段是控制(C)字段。若该字段的第一

比特(最低位LSB)为“0”,则该帧为信息帧。

3.17 试比较非坚持型、1-坚持型和P-坚持型CSMA的优缺点。 答:

根据监听后的策略,CSMA有三种不同的方法:非坚持型、1—坚持型、P—坚持型。三种方法各自优缺点如下:

(1)非坚持型在监听到信道忙时,不坚持监听,而是延迟一个随机时间再次监听,准备发送。这种方法控制简单,减少了冲突发生的概率。但再次监听之前可能信道早已空闲,这就造成一定的时间浪费,效率较低。 (2)1—坚持型方法在监听到信道忙时,一直坚持监听,直到监听到信道空闲,以概率1立即发送。这种策略能够及早发送数据,但当有两个或以上的站同时在监听和准备发送时,信道由忙至空闲的状态转换就起了同步的作用,造成两个或多个站同时发送,就会发生冲突,反而降低了效率。

(3)P—坚持型采用了一种折中方案,当监听到总线空闲时,以P的概率发送,而以1—P的概率延迟一个时间单位后再监听,准备发送。这种方法减少了发送冲突的可能性,但退避也可能造成信道浪费。

3.18 CSMA控制方案包括哪三种算法?简述三种算法的算法思想。 答:

载波监听多路访问(Carries Sense Multiple Access,CSMA)是每个站在发送帧之前监听信道上是否有其他站点正在发送数据,即检查一下信道上是否有载波,或者说信道是否忙。如果信道忙,就暂不发送,否则就发送。这种方法称为“先听后说”,减少了发生冲突的概率。

根据监听后的策略,有三种不同的协议,即:非坚持型、1—坚持型、P—坚持型。 (1)非坚持型

17

非坚持型的工作原理是当监听到信道空闲时,则立即发送;当监听到信道忙时,不坚持监听,而是延迟一个随机时间再次监听,准备发送。当然,再次监听之前可能信道早已空闲,这就造成一定的时间浪费,但减少了冲突发生的概率。 (2)1—坚持型

1—坚持型的工作原理是在监听到信道忙时,一直坚持监听,直到监听到信道空闲,以概率1立即发送。这种策略是争取及早发送数据,但当有两个或以上的站同时在监听和准备发送时,信道由忙至空闲的状态转换就起了同步的作用,两个或多个站同时发送,就会发生冲突。 (3)P—坚持型

为了降低1—坚持型的冲突概率,又减少非坚持型造成的介质时间浪费,采用了一种折中方案,这就是P—坚持型CSMA。这种方案的特点是当监听到总线空闲时,以P的概率发送,而以1—P的概率延迟一个时间单位。时间单位等于最大端—端传播延时τ。然后再监听,如果监听到信道忙,则继续监听,直到空闲。

上述三种方案都不能避免冲突发生,无非冲突的概率不同。一旦有冲突发生,则要延迟随机个τ时间片再重复监听过程。

3.19 简单比较一下纯ALOHA和时隙ALOHA协议。 答:

ALOHA是最基本的随机访问技术,其又分为纯ALOHA和时隙ALOHA。它们的区别在于是否将时间分成离散的时隙以便所有的帧都必须同步到时隙中。纯ALOHA不要求全局的时间同步,而时隙ALOHA则需要。

由于采用纯ALOHA技术的系统中,任何站点可以在任意时刻发送帧。在一个站发送分组过程中的任何时刻都可能发生冲突。这样相邻的两冲突分组都必须重发。需要重发的分组各自延迟一个随机时间后再重发,直至成功。

采用时隙ALOHA技术,只要发送帧的长度小于时隙长度,如果在帧开始时没有冲突,则在这个时隙内就不会出现冲突,帧就能发送成功。与纯ALOHA相比,时隙ALOHA冲突的危险区时间由2个T0变为一个T0,在同等条件下冲突的可能性减小。时隙ALOHA的最大信道利用率是纯ALOHA的2倍,但需要全系统同步,增加了控制开销。

3.20 简述CSMA/CD协议的工作原理。 答:

CSMA/CD的工作原理归纳如下;

(1)载波监听

任一站要发送信息时,首先要监测总线,用来判决介质上有否其他站的发送信号.如果介质呈忙,则继续检测,直到发现介质空闲。如果

18

检测介质为空闲,则可以立即发送。由于通道存在传播时延,采用载波监听的方法仍避免不了两站点在传播时延期间发送的帧会产生冲突。 (2)冲突检测

每个站在发送帧期间,同时具有检测冲突的能力。一旦检测到冲突,就立即停止发送,并向总线上发一串阻塞信号,通报总线上各站已发生冲突。

(3)多路访问

检测到冲突并在发完阻塞信号后,发送站退回等待。为了降低再次冲突的概率,需要等待一个随机时间(冲突的各站可不相等),然后再用CSMA算法重新发送。

3.21 假设某个4Mb/s的令牌环的令牌保持计时器的值是10ms。则在该环上可

以发送的最长帧是多少? 答:

在令牌环网中,为了保证不会因为令牌丢失而使网络不能正常工

作,需要对令牌监测。令牌保持计时器的值是10ms,就表示监控站必须在10ms内监测到网络中有令牌帧传送,否则会进入令牌丢失处理过程。因此要求网络中传输一个数据帧的时间不能超过10ms。

此令牌环网络的数据速率4Mb/s,则10ms可以传送数据40000bit,

即最长的帧为40000bit。实际上,考虑必要的控制开销和传播时延、节

点延迟,实际应用的帧长度会更小一些,数据部分更短。

3.22 简述CSMA/CA协议的工作原理。 答:

欲发送数据的站先检测信道,通过收到的相对信号强度是否超过一定的门限数值就可判定是否有其他的移动站在信道上发送数据。当源站发送它的第一个MAC帧时,若检测到信道空闲,则在等待—段DIFS时间后就可发送。

在信道空闲时还要再等待,主要是考虑到可能有其他的站有高优先级的帧要发送。如有,就要让高优先级帧先发送。

假定没有高优先级帧要发送,则该站发送自己的数据帧。目的站若正确收到此帧,则经过时间间隔SIFS后,向发送站回送确认帧ACK。若发送站在规定时间内没有收到确认帧ACK(由重传计时器控制这段时间),就必须重传此帧,直到收到确认为止,或者,经过若干次的重传失败后放弃发送。

当某个想发送数据的站使用退避算法选择了争用窗口中的某个时隙后,就根据该时隙的位置设置一个退避计时器(back off timer)。当退避计时器的时间减小到零时,就开始发送数据。也可能当退避计时器的时

19

间还未减小到零时而信道又转变为忙态,这时就冻结退避计时器的数值,重新等待信道变为空闲,再经过时间DIFS后,继续启动退避计时器(从剩下的时间开始)。这种规定有利于继续启动退避计时器的站更早地接入到信道中。

第四章练习题答案

4.01局域网标准的多样性体现在四个方面的技术特性,请简述之。 答:

局域网技术一经提出便得到了广泛应用,各计算机和网络设备生产厂商纷纷提出自己的局域网标准,试图抢占和垄断局域网市场。因此,局域网标准一度呈现出特有的多样性。局域网标准的多样性体现在局域网的四个技术特性:

(1)传输媒体 传输媒体指用于连接网络设备的介质类型,常用的有双绞线、同轴电缆、光纤,以及微波、红外线和激光等无线传输媒体。目前广泛应用的传输媒体是双绞线。随着无线局域网的广泛应用,无线正得到越来越多的应用。

(2)传输技术 传输技术指借助传输媒体进行数据通信的技术,常用的有基带传输和宽带传输两种。传输技术主要包括信道编码、调制解调以及复用技术等,属于物理层研究的范畴。

(3)网络拓扑 网络拓扑指组网时计算机和通信线缆连接的物理结构和形状。常用的有星形、总线形和环形。不同的网络拓扑需要采用不同的数据发送和接收方式。

(4)媒体访问控制方法 访问控制方法指多台计算机对传输媒体的访问控制方法,这里的访问,是指通过传输媒体发送和接收数据。常用的有随机争用、令牌总线和令牌环等访问控制方法。目前局域网中广泛采用的是一种受控的随机争用方法,即载波监听多点接入/冲突检测(CSMA/CD)方法。

4.02逻辑链路控制(LLC)子层有何作用?为什么在目前的以太网网卡中没有LLC子层的功能? 答:

在局域网发展的早期,有多种类型的局域网,如802.4令牌总线网、802.5令牌环网等。为了使数据链路层能更好地适应多种局域网标准,IEEE 802委员会在局域网的数据链路层定义了两个子层,即逻辑链路控制LLC (Logical Link Control)子层和媒体接入控制MAC (Medium Access control)子层。与接入传输媒体有关的内容放在MAC子层,而与传输媒体无关的链路控制部分放在LLC子层。这样可以通过LLC子层来屏蔽底层传输媒体和访问控制方法的异构性,实现多种类型局域网之间的互操作。

随着以太网技术的发展,以太网得到了越来越广泛的应用。到了20世

20