(完整word版)高中化学选修3物质结构与性质全册知识点总结,推荐文档 联系客服

发布时间 : 星期三 文章(完整word版)高中化学选修3物质结构与性质全册知识点总结,推荐文档更新完毕开始阅读ae93431c935f804d2b160b4e767f5acfa1c783d4

——

(2)范德华力与氢键的比较

概念 范德华力 氢键 物质分子间存在的微弱相分子间(内)电负性较大的成键原子通过H互作用 原子而形成的静电作用 分子中含有与H原子相结合的原子半径小、存在范围 分子间 电负性大、有孤对电子的F、O、N原子 强度比较 比化学键弱得多 影响因素 比化学键弱得多,比范德华力稍强 随分子极性和相对分子质 量的增大而增大 随范德华力的增大,物质的分子间氢键使物质熔沸点升高硬度增大、水性质影响 熔沸点升高、溶解度增大 中溶解度增大;分子内氢键使物质熔沸点降低、硬度减小 2、极性分子和非极性分子 (1)极性分子和非极性分子

<1>非极性分子:从整个分子看,分子里电荷的分布是对称的。如:①只由非极性键构成的同种元素的双原子分子:H2、Cl2、N2等;②只由极性键构成,空间构型对称的多原子分子:CO2、CS2、BF3、CH4、CCl4等;③极性键非极性键都有的:CH2=CH2、CH≡CH、

<2>极性分子:整个分子电荷分布不对称。如:①不同元素的双原子分子如:HCl,HF等。②折线型分子,如H2O、H2S等。③三角锥形分子如NH3等。

(2)共价键的极性和分子极性的关系:

两者研究对象不同,键的极性研究的是原子,而分子的极性研究的是分子本身;两者研究的方向不同,键的极性研究的是共用电子对的偏离与偏向,而分子的极性研究的是分子中电荷分布是否均匀。非极性分子中,可能含有极性键,也可能含有非极性键,如二氧化碳、甲烷、四氯化碳、三氟化硼等只含有极性键,非金属单质F2、N2、P4、S8等只含有非极性键,C2H6、C2H4、C2H2等既含有极性键又含有非极性键;极性分子中,一定含有极性键,可能含有非极性键,如HCl、H2S、H2O2等。

(3)分子极性的判断方法

①单原子分子:分子中不存在化学键,故没有极性分子或非极性分子之说,如He、Ne等。

——

②双原子分子:若含极性键,就是极性分子,如HCl、HBr等;若含非极性键,就是非极性分子,如O2、I2等。

③以极性键结合的多原子分子,主要由分子中各键在空间的排列位置决定分子的极性。若分子中的电荷分布均匀,即排列位置对称,则为非极性分子,如BF3、CH4等。若分子中的电荷分布不均匀,即排列位置不对称,则为极性分子,如NH3、SO2等。

④根据ABn的中心原子A的最外层价电子是否全部参与形成了同样的共价键。(或A是否达最高价)

(4)相似相溶原理

①相似相溶原理:极性分子易溶于极性溶剂,非极性分子易溶于非极性溶剂。 ②相似相溶原理的适用范围:“相似相溶”中“相似”指的是分子的极性相似。 ③如果存在氢键,则溶剂和溶质之间的氢键作用力越大,溶解性越好。相反,无氢键相互作用的溶质在有氢键的水中的溶解度就比较小。

3、有机物分子的手性和无机含氧酸的酸性 (1)手性分子

①手性分子:具有完全相同的组成和原子排列的一对分子,如同左手与右手一样互为镜像,却在三维空间里不能重叠,互称手性异构体(又称对映异构体、光学异构体)。含有手性异构体的分子叫做手性分子。

②手性分子的判断方法:判断一种有机物是否具有手性异构体,可以看其含有的碳原子是否连有四个不同的原子或原子团,符合上述条件的碳原子叫做手性碳原子。手性碳原子必须是饱和碳原子,饱和碳原子所连有的原子和原子团必须不同。

(2)无机含氧酸分子的酸性

①酸的元数=酸中羟基上的氢原子数,不一定等于酸中的氢原子数(有的酸中有些氢原子不是连在氧原子上)

②含氧酸可表示为:(HO)mROn,酸的强度与酸中的非羟基氧原子数n有关,n越大,酸性越强。

n=0 弱酸 n=1 中强酸 n=2强酸 n=3 超强酸

(六)晶体的结构和性质

1、四大晶体的比较 晶体类型 离子晶体 原子晶体 原子 分子晶体 分子 金属晶体 金属阳离子、自由电子 构成晶体微粒 阴、阳离子 —

——

粒子间作用力 离子键 熔沸点 硬度 物导电性 理性传热性 质 延展性 溶解性 典型实例 较高 硬而脆 不良(熔融或水溶液中导电) 不良 不良 易溶于极性溶剂,难溶于有机溶剂 NaOH、NaCl 共价键 很高 大 绝缘、半导体 不良 不良 不溶于任何溶剂 金刚石 范德华力 低 小 不良 不良 不良 微粒间的静电作用 有高、有低 有高、有低 良导体 良 良 钠等极性分子易溶于极一般不溶于溶剂,性溶剂;非极性分子可与水、醇类、酸类反易溶于非极性溶剂 应 P4、干冰、硫 钠、铝、铁 2、典型晶体的结构特征 (1)NaCl

属于离子晶体。晶胞中每个Na+周围吸引着6个Cl,这些Cl构成的几何图形是正八面体,每个Cl-周围吸引着6个Na+,Na+、Cl-个数比为1:1,每个Na+与12个Na+等距离相邻,每个氯化钠晶胞含有4个Na+和4个Cl-。

(2)CsCl

属于离子晶体。晶胞中每个Cl—(或Cs+)周围与之最接近且距离相等的Cs+(或Cl—)共有8个,这几个Cs+(或Cl—)在空间构成的几何构型为立方体,在每个Cs+周围距离相等且最近的Cs+共有6个,这几个Cs+在空间构成的几何构型为正八面体,一个氯化铯晶胞含有1个Cs+和1个Cl— 。

(3)金刚石(空间网状结构)

属于原子晶体。晶体中每个C原子和4个C原子形成4个共价键,成为正四面体结构,C原子与碳碳键个数比为1:2,最小环由6个C原子组成,每个C原子被12个最小环所共用;每个最小环含有1/2个C原子。

(4)SiO2

属于原子晶体。晶体中每个Si原子周围吸引着4个O原子,每个O原子周围吸引着2个Si原子,Si、O原子个数比为1:2,Si原子与Si—O键个数比为1:4,O原子与Si—O键个数比为1:2,最小环由12个原子组成。

(5)干冰

属于分子晶体。晶胞中每个CO2分子周围最近且等距离的CO2有12个。1个晶胞中含有4个CO2。

——

(6)石墨

属于过渡性晶体。是分层的平面网状结构,层内C原子以共价键与周围的3个C原子结合,层间为范德华力。晶体中每个C原子被3个六边形共用,平均每个环占有2个碳原子。晶体中碳原子数、碳环数和碳碳单键数之比为2:3。

(7)金属晶体

金属Po(钋)中金属原子堆积方式是简单立方堆积,原子的配位数为6,一个晶胞中含有1个原子。金属Na、K、Cr、Mo(钼)、W等中金属原子堆积方式是体心立方堆积,原子的配位数为8,一个晶胞中含有2个原子。金属Mg、Zn、Ti等中金属原子堆积方式是六方堆积,原子的配位数为12,一个晶胞中含有2个原子。金属Au、Ag、Cu、Al等中金属原子堆积方式是面心立方堆积,原子的配位数为12,一个晶胞中含有4个原子。

3、物质熔沸点高低的判断

(1)不同类晶体:一般情况下,原子晶体>离子晶体>分子晶体

(2)同种类型晶体:构成晶体质点间的作用力大,则熔沸点高,反之则小。 ①离子晶体:结构相似且化学式中各离子个数比相同的离子晶体中离子半径小(或阴、阳离子半径之和越小的),键能越强的,熔、沸点就越高。如NaCl、NaBr、Nal;NaCl、KCl、RbCl等的熔、沸点依次降低。离子所带电荷大的熔点较高。如:MgO熔点高于NaCl。

②分子晶体:在组成结构均相似的分子晶体中,式量大的,分子间作用力就大,熔点也高。如:F2、Cl2、Br2、I2和HCl、HBr、HI等均随式量增大。熔、沸点升高。但结构相似的分子晶体,有氢键存在熔、沸点较高。

③原子晶体:在原子晶体中,只要成键原子半径小,键能大的,熔点就高。如金刚石、金刚砂(碳化硅)、晶体硅的熔、沸点逐渐降低。

④金属晶体:在元素周期表中,主族数越大,金属原子半径越小,其熔、沸点也就越高。如ⅢA的Al,ⅡA的Mg,IA的Na,熔、沸点就依次降低。而在同一主族中,金属原子半径越小的,其熔沸点越高。