[政史地]经典易错题会诊与高考试题预测四 联系客服

发布时间 : 星期三 文章[政史地]经典易错题会诊与高考试题预测四更新完毕开始阅读af66285cb94cf7ec4afe04a1b0717fd5360cb2bf

2.等比数列中q可以取负值.不能设公比为q.

3.会运用等比数列性质,“若m+n=p+k,则am·an=ap·ak”. 考场思维训练

1 试在无穷等比数列,, ,…中找出一个无穷等比的子数列(由原数列中部分项按原来次序排列的数列),使它所有项的和为

14 12142

18,则此子数列的通项公式为_______. 答案: an=()n;分析:略。

2 已知等比数列{an}的首项为8,Sn是其前n项的和,某同学经计算得S2=20,S3=36,S4=65,后来该同学发现了其中一个数算错了,则该数为( )

A.S1 B. S2 C.S3 D.S4

答案: C分析:略。

3 已知数列{an}的首项为a1,公比为q(q≠-1),用Sn?m表示这个数列的第n项到第m项共m-n+1项的和.(Ⅰ)计算S1?3,S4?6,S7?9,并证明它们仍成等比数列; 答案: S1→3=a1(1+q+q),S4→6=a1q3(1+q+q),

6

S7→9=a1q(1+q+q),因为

2

2

2

18S7?9S4?6??q3,所以S1?3S4?6S7?9成等比数列. S4?6S1?3(Ⅱ)受上面(Ⅰ)的启发,你能发现更一般的规律吗?写出你发现的一般规律,并证明.

答案:一般地

Sn?n?mSp?p?mSr?r?m(2P?r?n且mnpr均为整数)也成等比数列,Sn?n?m?a1qn?1(1?q?q2??qm),Sp?p?m?a1qp?1(1?q?q2???qmSr?r?m?a1qr?1(1?q?q2???qm),5613Sp?p?mSr?r?m??qp?n(2p?r?n),所以Sn?n?mSp?p?mSr?r?m成等比数列.Sp?p?mSn?n?m12n+1

*

*

4 已知数列{an}中,a1=,an+1=an+()(n∈N),数列{bn}对任何 n∈N都有bn=an+1-(1)求证{bn}为等比数列;

11n?1?111答案: bn+1=an+2?1an?1?1an?1?(1)n?2?1??an?()??(an?1?an)?bn

2322?32?3231an. 2

若bn=0,则an+1=an?an?an?()n?1

1?an?3?()n

2?a1?3b1,不满足条件故n?1?,即{bn}为等比数列 2bn312121312b1=a2-a1?a1?()2?a1?1?bn?()n?1

3121312121 9

(2)求{bn}的通项公式;

(3)设数列{an}的前n项和为Sn,求答案: an+1?1an?bn?(1)n?1

23limSnx??.

又an+1=an?()n?1

1111?an?()n?1?an?()n?1 322311?an?3.()n?2.()n

231312?n?n?SN=3??????()??????()?248?2?3927? 23????1?1?1?1?1?()n?1?()n???22?33??2.?=3.? 111?1?23111111111=()n?3.()n?2?limSn=2

x→∞

5 已知数列{an}的首项为a1=2,前n项和为Sn,且对任意的正整数n,an都是3Sn-4与2-Sn-1的等差中项(n≥2).(1)求证:数列{an}是

等比数列,并求通项an;

答案:当n≥2时,2an=3Sn-4+2?Sn?1,即2(Sn?Sn?1)?3Sn?4?2?Sn?1得到Sn?Sn?1?2, 又a1?2,则有a2?1,而12131252525212an?1Sn?1?Sn1a2111??,?,所以数列?an?是公比为的等比数列,得an?n?2. anSn?Sn?12a122a(2)证明(log2Sn+log2Sn+2)<log2Sn+1; 答案:由an?SnSn?2?(4?(Sn?1)2?(4?,得Sn?4?n?2112n?2,

22)(4?n?21112)?16?5(n122)?(n?2122n?2.1)22n?2.

12)2?16?4(n?2)?n?2?SnSn?2?(Sn?1)21(log2Sn?log2Sn?2)?log2Sn?1.] 2(3)若bn=

442

-1,cn=log2(),Tn、Rn分别为{bn}和{cn}的前n项和.问:是否存在正整数n,使得Tn>Rn,若存anan在,请求出所有n的值,若不存在请说明理由.

答案:bn?2n?1,cn?2n,?Tn?2n?1?n?2,Rn?n2?n, 当n=1、2、3时,TnRn.

D12n?1nD1222当n?6时,2n?1?(1?1)n?1?Cn?1?Cn?1?Cn?1???Cn?1?Cn?1?1?(Cn?1?Cn?1?Cn?1)?n?3n?4?n?2n?2.

即2n?1?n?2?n2?n.Tn?Rn.?n?4,n??

命题角度 4 等差与等比数列的综合

1.(典型例题)已知数列{an}的前n项和Sn=a[2-()]-b[2-(n+1)()](n=1,2,…),其中a,b是非零常数,则存在数列{xn}、{yn}使得( )

A.an=xn+yn,其中{xn}为等差数列,{yn}为等比数列 B.an=xn+yn,其中{xn}和{yn}都为等差数列

C.an=xn·yn,其中{xn}为等差数列,{yn}为等比数列 D.an=xn·yn,其中{xn}和{yn}都为等比数列

[考场错解]∵a[2-()]=xn,

b[2-(n-1)()]=yn,又∵xn,yn成等比数列,故选D.

[专家把脉]应从数列{an}的前n项和Sn的表达式入手,而不能从形式上主观判断. [对症下药] C. an=Sn-Sn-1=a[2+()]-b[2-(n+1)·()]-a[2+()]+b[2-n()]=(bn-b-a)·()

12n-1

12n-1

12n-1

12n-1

12n-1

a1=S1=3a

∵{()}为等

12n-1

12n+1

12n-2

12n-2

12n-1

比数列,{bn-a-b}为等差数列.

2.(典型例题)已知数列{an}是首项为a且公比q不等于1的等比数列,Sn是其前n项和,a1,2a7,3a4成等差数列.

(Ⅰ) 证明12S3,S6,S12-S6成等比数列; (Ⅱ)求和Tn=a1+2a4+3a7+…+na3n-2.

[考场错解] (Ⅰ)由a1,2a7,3a4 成等差数列.得4a7=a1+3a4,4aq=a+3aq.从而可求q=-,或q=1.当q=-时,

3

6

3

3

143

14111S6S?SSS?S636

=,126=q=.故12S3,S6,S12-S6成等比数列.当q=1时,6=,126=q=1.

1612S316S612S36S6故12S3,S6,S12-S6不成等比数列.

[专家把脉]本题条件中已规定q≠1.故应将q=1时舍去.

6333

[对症下药](Ⅰ)证明:由a1,2a7,3a4成等差数列.得4a7=a1+3a4,即4aq=a+3aq.变形得(4q+1)(q-1)=0,所以q=-或q=1(舍去)由

a1(1?q6)1?qa1(1?q12)1?q3

143

11?q31S12?S6S12S6S6S12?S666

??,?1??1?==1+q-1=q=,得=.所以

161216S612S3S612S3S612a1(1?q3)a1(1?q6)1?q1?q

12S3,S6,S12-S6成等比数列.

(Ⅱ)解

14142

14n-1

:Tn=a1+2a4+3a7+…+na3a-2=a+2aq+3aq+…+naq

363(n-2)

,即

Tn=a+2·(-)a+3·(-)a+…+n·(-)a. ①

①×(-)a得:-Tn=-a+2·(-)a+3·(-)a+…+n·(-)a ② ①

-②

143

1414142

143

14n

??1?n?a?1???????4??5112131n-11n?-n·(-1)naTn=a+(-)a+(-)a+(-)a+…(-)a-n·(-)a=?4444444?1?1?????4?=a-(+n)·(-)a.所以Tn=

454514n

1n16?164?a???n?·(-)a.

425?255?3.(典型例题)如图,△OBC的三个顶点坐标分别为(0,0)、(1,0)、(0,2),

设P1为线段BC的中点,P2为线段CO的中点,P3为线段OP1的中点,对于每一个正整数n,Pn+3为线段PnPn+1的中点,令Pn的坐标为(xn,yn)

(Ⅰ)求a1,a2,a3及an; (Ⅱ)证明yn+4=1-yn*

,n∈N, 4*

,an=yn+yn+1+yn+2.

12(Ⅲ)若记bn=y4n+4-y4n,n∈N,证明{bn}是等比数列.

[考场错解](1)∵y1=y2=y4=1,y3=,y5=,可求得a1=a2=a3=2,由此类推可求得an=2 (Ⅱ)将yn+yn+1+yn+2=2同除以2,得yn+4=

121234y4yn?1?yn?2,∴yn+4=1-. 42b(Ⅲ)bn+1=y4n+8-y4n+4=-1(y4n+4-y4n)=-1bn.∴n?1=-1.故{bn}是等比数列.

4

4bn4[专家把脉]第(Ⅰ)问题运用不完全归纳法求出an的通项.理由不充分,第(Ⅲ)问中

bn?1b=-1.要考虑b1是否为0.即n?1有意义才更完整. bnbn4[对症下药] (Ⅰ)因为y1=y2=y4=1,y3=yn+3=

yn?yn?1. 231 ,y5=,所以a1=a2=a3=2.又由题意可知

42∴an+1=yn+1+yn+2+yn+3=yn+1+yn+2+

121212yn?yn?11*

=yn+yn+1+yn+2=an,∴{an}为常数列.∴an=a1=2,n∈N. 22yyn?1?yn?2y?y=1,又∵yn+4=n?1n?2,∴yn+4=1-n.

422(Ⅱ)将等式yn+yn+1+yn+2=2两边除以2,得1yn+

4(Ⅲ)∵bn+1=y4n+8-y4n+4=??1??y4n?4??y?111?-?1?4n?=-(y4n+4-y4n)=- bn,又∵b1=y8-y4=-≠0,∴{bn}是公比为4??4?444