中南大学材基课后题答案 联系客服

发布时间 : 星期日 文章中南大学材基课后题答案更新完毕开始阅读b14d216248d7c1c708a1452b

退火孪晶:某些面心立方金属和合金经过加工和再结晶退火后出现的孪晶组织。 2 问答

1 简答:再结晶是一种组织转变,从变形组织转变为无畸变新晶粒的过程,再结晶前后组织形态改变,晶体结构不变;固态相变时,组织形态和晶体结构都改变;晶体结构是否改变是二者的主要区别。

2 简答:变形度较小时以晶界弓出机制形核,变形度大的高层错能金属以亚晶合并机制形核,变形度大的低层错能金属以亚晶长大机制形核。

冷变形度很小时不发生再结晶,晶粒尺寸基本保持不变,在临界变形度附近方式再结晶晶粒特别粗大,超过临界变形度后随变形度增大,晶粒尺寸减少,在很大变形度下,加热温度偏高,少数晶粒发二次再结晶,使部分晶粒粗化。

3 简答:灯泡中W丝在高温下工作,晶粒长大后在热应力作用下破断,延长钨丝寿命的方法可以加入第二相质点阻止晶粒在加热时长大,如加入ThO2颗粒;或在烧结中使制品中形成微细的空隙也可以抑制晶粒长大,如加入少量K、Al、Si等杂质,在烧结时汽化形成极小的气泡。

4 简答: 户外用的架空铜导线要求一定的强度可以进行回复退火,只去应力,保留强度;户内电灯用花线可以进行再结晶退火,软化金属,降低电阻率。

5 简答:1)纯铝经90%冷变形后在70e ,150e ,300e 保温后空冷的组织示意图如图。

2)纯铝试样强度、硬度以70e 退火后最高,150e 退火试样的强度、硬度次之,300e 保温后强度、硬度最低,而塑性则以70e 退火后最低,150e 退火试样的居中,300e 保温后塑性最好;

工业纯金属的再结晶温度一般可用T再=(0.3~0.4)T熔估计,故纯铝的再结晶温度为100e左右,在70℃保温合金只是发生回复,显微组织仍保持加工状态,强度。硬度最高,塑性差,组织为纤维组织;150e 加热发生再结晶,强度、硬度下降,塑性好,300e 保温后发生晶粒长大,强度、硬度进一步下降,塑性很好。

7 简答:可计算得到三种纯金属的再结晶温度大约为纯钛:550℃,纯铝:100℃,纯铅低于0℃。金属的轧制开坯温度要在再结晶温度以上进行,故工业纯钛、纯铝和纯铅铸锭的轧制开坯温度可分别取200℃,800℃,室温即可。

开坯后在室温轧制,铅的塑性最好,铝的塑性也较好,钛的塑性最差。在室温下纯铝和纯铅可以连续轧制,并获得很薄的带材,但纯钛不能继续轧制,要获得很薄的带材需要在再结晶温度以上反复进行轧制。

8 简答:晶粒大小对金属材料的室温力学性能可用Hall-Petch公式

描述,晶粒越细小,材料强度越高;高温下由于晶界产生粘滞性

流动,发生晶粒沿晶界的相对滑动,并产生扩散蠕变,晶粒太细小金属材料的高温强度反而降低。

生产中可以通过选择合适的合金成分获得细小晶粒,利用变质处理,振动、搅拌,加大过冷度等措施细化铸锭晶粒,利用加工变形细化晶粒,合理制订再结晶工艺参数控制晶粒长大。

9 简答: 固溶强化,细晶强化,加工硬化,第二相强化,相变(热处理)强化等。

10 简答: 固溶强化的可能位错机制主要是溶质原子气团对位错的钉扎,增加了位错滑移阻力。如溶质原子与 位错的弹性交互作用的科垂尔气团和斯诺克气团,溶质原子与扩展位错交互作用的铃木气团使层错宽度增加,位错难于束集,交滑移困难;溶质原子形成的偏聚和短 程有序,位错运动通过时破坏了偏聚和短程有序使得能量升高,增加位错的阻力,以及溶质原子与位错的静电交互作用对位错滑移产生的阻力使材料强度升高。

弥散强化也是通过阻碍位错运动强化材料,如位错绕过较硬、与基体非共格第二相的Orowan机制和切割较软、与基体共格的第二相粒子的切割机制。 产生加工硬化的各种可能机制有滑移面上平行位错间的交互作用的平行位错硬化理论,以及滑移面上位错与别的滑移面上位错林切割产生割阶的林位错强化理论。

第九章 表面与界面

1 名词

正吸附:材料表面原子处于结合键不饱和状态,以吸附介质中原子或晶体内部溶质原子达到平衡状态,当溶质原子或杂质原子在表面浓度大于在其在晶体内部的浓度时称为正吸附;

晶界能:晶界上原子从晶格中正常结点位置脱离出来,引起晶界附近区域内晶格发生畸变,与晶内相比,界面的单位面积自由能升高,升高部分的能量为晶界能;

小角度晶界:多晶体材料中,每个晶粒之间的位向不同,晶粒与晶粒之间存在界面,若相邻晶粒之间的位向差在10°~2°之间,称为小角度晶界;

晶界偏聚:溶质原子或杂质原子在晶界或相界上的富集,也称内吸附,有因为尺寸因素造成的平衡偏聚和空位造成的非平衡偏聚。 2 问答

1 简答: 复合材料由颗粒或纤维与基体构成,存在大量界面。按照显微结构,其界面层可以区分为基体与复 合物的机械固体啮合结合、形成化学反应的化合层结合、形成完全或部分固溶体的结合几种情况。结合层的结合面体积分数越大,结合层强度越高,基体与复合物之 间的结合键力越大,结合强度越高。

2 简答: 晶界具有晶界能,容易发生溶质原子和杂质原子的晶界偏聚,是原子易扩散通道,晶界在加热时会 发生迁移,晶界是相变等优先形核的地方,晶界易受腐蚀,晶界增多在室温下强化材料,在高温下弱化材料强度,晶界处易于析出第二相,晶界容易使位错塞积,造 成应力集中,晶界上原子排列混乱。

3 简答:一般金属的晶界能与晶粒位向差有关,并随位向差增大而增大,小角度晶界的晶界能小于大角度晶界的晶界能,但大角度晶界能一般可以看成常数,约为(5~6)×10-5J/cm2。

4 简答: 影响晶界迁移的因素主要有界面能、溶质原子、第二相质点数量、尺寸和温度。界面能降低是晶界 迁移的驱动力,与晶界曲率半径成反比,与界面的表面能成正比,因此大角度晶界迁移率总是大于小角度晶界的迁移率;

溶质原子阻碍晶界迁移;第二相质点数量越 多、尺寸越小对晶界的迁移阻碍作用越大,温度越高晶界迁移越快。

第十章 原子扩散

1 简答: 影响扩散的因素主要有温度,温度越高,扩散越快;晶体缺陷如界面、晶界位错容易扩散;不同致 密度的晶体结构溶质原子扩散速度不一样,低致密度的晶体中溶质原子扩散快,各向异性也影响溶质原子扩散;在间隙固溶体中溶质原子扩散容易;扩散原子性质与 基体金属性质差别越大,扩散越容易;一般溶质原子浓度越高,扩散越快;加入其它组元与溶质原子形成化合物阻碍其扩散。

2 解答:Ni为fcc结构,一个晶胞中的原子个数为4,依题意有:

在Ni/MgO界面镍板一侧的Ni的浓度CNi为100%,每cm3中Ni原子个数为: NNi/MgO=(4原子/晶胞)/(3.6×10-8cm3)=8.57×1022原子/cm3,

在Ta/MgO界面Ta板一侧的Ni的浓度0%,这种扩散属于稳态扩散,可以利用菲克第一定律求解。

故浓度梯度为dc/dx=(0-8.57×1022原子/cm3)/(0.05cm)=-1.71×1024原

3

子/(cm.cm),

则Ni原子通过MgO层的扩散通量:

J=-D(dc/dx)=-9×10-12cm2/s×(-1.71×1024原子/(cm3.cm)) =1.54×1013Ni原子/(cm2.s)

每秒钟在2×2cm2的面积上通过MgO层扩散的Ni原子总数N为 N=J×面积=[1.54×1013Ni原子/(cm2.s)]×4cm2=6.16×1013Ni原子/s。

每秒钟从界面扩散走的Ni原子体积,故

V=(6.16×1013Ni原子/s)/(8.57×1022原子/cm3)=0.72×10-9cm3/s, 用厚度d表示在该面积中每秒扩散的Ni原子为

d=V/面积=(0.72×10-9cm3/s)/(2×2cm2)=1.8×10-10cm/s,