2015届福州高三上学期教学质量检查数学理试题 联系客服

发布时间 : 星期五 文章2015届福州高三上学期教学质量检查数学理试题更新完毕开始阅读b56ab032be1e650e52ea99de

注意到y1?8?x及y2?则y?8?x?10m(1≤m≤4且m?R)均关于x在[6,8]上单调递减, x?210m关于x在[6,8]上单调递减, ····························································· 10分 x?2610m5m5m故y≥8?8?,由······················································ 11分 ?≥2,得m≥, ·

8?23356所以所求的m的最小值为. ······················································································· 12分

521. 本题主要考查抛物线的标准方程与性质、直线与抛物线的位置关系、归纳推理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想、特殊与一般思想等. 解:(Ⅰ)依题意可设抛物线?的方程为:x2?2py(p?0). ······························· 1分

p由焦点为F(0,1)可知?1,所以p?2. ······································································ 2分

2所以所求的抛物线方程为x2?4y. ················································································ 3分 (Ⅱ)方法一:

2?x12??x2?1设切点A、B坐标分别为?x1,?,?x2,?,由(Ⅰ)知,y??x.

4??4?2?11则切线PA、PB的斜率分别为k1?y?x?x?x1,k2?y?x?x?x2,

122211121故切线PA、PB的方程分别为y?x12?x1(x?x1),y?x2············ 4分 ?x2(x?x2), ·

4242x1?x2?x?,?x?x1?2联立以上两个方程,得?.故P的坐标为(12,x1x2), ··························· 5分

124?y?xx12?4?1因为点P在抛物线?的准线上,所以x1x2??1,即x1x2??4. ································· 6分

4设直线AB的方程为y?kx?m,代入抛物线方程x2?4y,得x2?4kx?4m?0, 所以x1x2??4m,即?4m??4,所以m?1. ································································· 7分

故AB的方程为y?kx?1,故直线AB恒过定点(0,1). ················································· 8分

2?x12???x2方法二:设切点A、B坐标分别为?x1,?,?x2,?,设P?m,?1?,

4??4??易知直线PA、PB斜率必存在,可设过点P的切线方程为y?1?k?x?m?.

?y?1?k?x?m?,由?2,消去y并整理得x2?4kx?4?km?1??0. ····················· ①

x?4y,?因为切线与抛物线有且只有一个交点,

所以???4k??16(km?1)?0,整理得k2?mk?1?0, ··································· ②

所以直线PA、PB斜率k1,k2为方程②的两个根,故k1?k2??1, ·································· 4分 另一方面,由??0可得方程①的解为x?2k, 所以x1?2k1,x2?2k2. ··································································································· 5分 假设存在一定点,使得直线AB恒过该定点,则由抛物线对称性可知该定点必在y轴 上,设该定点为C(0,c), ································································································· 6分

2x12x2则CA?(x1,?c),CB?(x2,?c).

442所以CA//CB,

2x2x12xx所以x1(?c)?(?c)x2?0,整理得c(x1?x2)?12(x2?x1)

444所以x1?x2,

xx4kk所以c??12??12?1 ······························································································· 7分

44所以直线AB过定点?0,1?. ····························································································· 8分

(Ⅲ)结论一:若点P为直线l:y?t(t?0)上的任意一点,过点P作抛物线?:x2?2py(p?0)的切线PA,PB,切点分别为A,B,则直线AB恒过定点(0,?t). ······························· 12分 结论二:过点Q?0,m?(m?0)任作一条直线交抛物线?:x2?2py?p?0?于A,B两点,分别以点A,B为切点作该抛物线的切线,两切线交于点P,则点P必在定直线y??m上. ·········· 12分

结论三:已知点P为直线l:y?kx?b上的一点,若过点P可以作两条直线与抛物线?:x2?2py(p?0)相切,切点分别为A,B,则直线AB恒过定点?pk,?b?. ·························· 12分 说明:①以上两结论只要给出其中一个即可或给出更一般性的结论; ②以上两结论中的抛物线开口方向均可改变; ③该小题评分可对照以下表格分等级给分: 得分 0分 1分 2分 3分 4分 答题情况 写出与命题(ⅰ)无关的结论. 所给命题的条件与结论均存在问题. 将准线或抛物线改为其它特殊情况,结论正确. 将准线或抛物线其中一个一般化,但结论中的定点(或定直线)有误. 写出命题的逆命题,结论正确.( 其它分点逆命题相应给分) 将准线和抛物线都推广成一般情况,但结论中的定点(或定直线)有误. 将准线和抛物线其中一个推广成一般情况,结论正确. 将准线和抛物线都推广成一般情况,但m?0,p?0中漏写一个或两个. 将准线和抛物线都推广成一般情况,结论正确. 22.本题主要考查函数的零点、函数的导数、导数的应用、不等式的恒成立等基础知识,考查推理论证能力、运算求解能力等,考查函数与方程思想、化归与转化思想、数形结合思想等.

π解:(Ⅰ)函数y?f?x?在(0,)上的零点的个数为1. ·············································· 1分

2理由如下:

因为f?x??exsinx?cosx,所以f??x??exsinx?excosx?sinx. ······························· 2分

π,所以f?(x)?0, 2π所以函数f(x)在(0,)上是单调递增函数. ··································································· 3分

2ππ因为f(0)??1?0,f()?e2?0,

2根据函数零点存在性定理得

π函数y?f?x?在(0,)上的零点的个数为1. ································································· 4分

2(Ⅱ)因为不等式f(x1)?g(x2)≥m等价于f(x1)≥m?g(x2),

ππ所以 ?x1?[0,],?x2?[0,],使得不等式f(x1)?g(x2)≥m成立,等价于

22················································· 6分 f(x1)min≥?m?g(x2)?min,即f(x1)min≥m?g(x2)max. ·因为0?x?

ππ当x?[0,]时,f??x??exsinx?excosx?sinx?0,故f(x)在区间[0,]上单调递增,所以x?0时,

22····································································································· 7分 f?x?取得最小值?1.·

又g??x??cosx?xsinx?2ex,由于0≤cosx≤1,xsinx≥0,2ex≥2,

π所以g??x??0,故g?x?在区间[0,]上单调递减,

2因此,x?0时,g?x?取得最大值?2.······································································· 8分 ?2?1. 所以?1≥m??2,所以m≤-??所以实数m的取值范围是??,?1?2?···································································· 9分 ?. ·

(Ⅲ)当x??1时,要证f?x??g?x??0,只要证f?x??g?x?, 只要证exsinx?cosx?xcosx?2ex, 只要证exsinx?2??x?1?cosx,

excosx?由于sinx?2?0,x?1?0,只要证. ············································· 10分 x?1sinx?2excosx?下面证明x??1时,不等式成立. x?1sinx?2???ex?x?1??exxexex令h?x??, ??x??1?,则h??x??22x?1?x?1??x?1?当x???1,0?时,h??x??0,h?x?单调递减; 当x??0,???时,h??x??0,h?x?单调递增.

所以当且仅当x?0时,h?x?取得极小值也就是最小值为1. 令k?cosxsinx?2,其可看作点A?sinx,cosx?与点B?2,0连线的斜率,

??所以直线AB的方程为:y?kx?2,

由于点A在圆x2?y2?1上,所以直线AB与圆x2?y2?1相交或相切, 当直线AB与圆x2?y2?1相切且切点在第二象限时,

直线AB取得斜率k的最大值为1. ··············································································· 12分

2?1?h?0?;x?0时,h?x??1≥k. ·故x?0时,k?·········································· 13分 2综上所述,当x??1时,f?x??g?x??0成立. ························································ 14分

??