生物科学生物技术科技英语阅读精选(1) - 图文 联系客服

发布时间 : 星期六 文章生物科学生物技术科技英语阅读精选(1) - 图文更新完毕开始阅读bf441b611ed9ad51f01df27f

17. Shim, H. et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc. Natl.

Acad. Sci. USA 94, 6658–6663 (1997).

18. Fantin, V.R., St-Pierre, J. & Leder, P. Attenuation of LDH-A expression uncovers a link between glycolysis,

mitochondrial physiology, and tumor maintenance. Cancer Cell 9, 425–434 (2006).

19. Qing, G. et al. Combinatorial regulation of neuroblastoma tumor progression by N-Myc and hypoxia

inducible factor HIF-1alpha. Cancer Res. 70, 10351–10361 (2010).

20. Yu, Y. et al. Selective active site inhibitors of human lactate dehydrogenases A4, B4, and C4. Biochem.

Pharmacol. 62, 81–89 (2001).

21. Le, A. et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression.

Proc. Natl. Acad. Sci. USA 107, 2037–2042 (2010).

22. Granchi, C. et al. Discovery of N-hydroxyindole-based inhibitors of human lactate dehydrogenase isoform A

(LDH-A) as starvation agents against cancer cells. J. Med. Chem. 54, 1599–1612 (2011).

23. Bonnet, S. et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes

apoptosis and inhibits cancer growth. Cancer Cell 11, 37–51 (2007).

24. Michelakis, E.D. et al. Metabolic modulation of glioblastoma with dichloroacetate. Sci. Transl. Med. 2,

31ra34 (2010).

25. Cairns, R.A., Papandreou, I., Sutphin, P.D. & Denko, N.C. Metabolic targeting of hypoxia and HIF1 in solid

tumors can enhance cytotoxic chemotherapy. Proc. Natl. Acad. Sci. USA 104, 9445–9450 (2007).

26. Dimmer, K.S., Friedrich, B., Lang, F., Deitmer, J.W. & Broer, S. The low-affinity monocarboxylate transporter

MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem. J. 350, 219–227 (2000).

27. Gallagher, S.M., Castorino, J.J., Wang, D. & Philp, N.J. Monocarboxylate transporter 4 regulates maturation

and trafficking of CD147 to the plasma membrane in the metastatic breast cancer cell line MDA-MB-231. Cancer Res. 67, 4182–4189 (2007).

28. Vegran, F., Boidot, R., Michiels, C., Sonveaux, P. & Feron, O. Lactate influx through the endothelial cell

monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 71, 2550–2560 (2011).

29. Bueno, V. et al. The specific monocarboxylate transporter (MCT1) inhibitor, AR-C117977, a novel

immunosuppressant, prolongs allograft survival in the mouse. Transplantation 84, 1204–1207 (2007).

30. Sonveaux, P. et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin.

Invest. 118, 3930–3942 (2008).

31. Vander Heiden, M.G. Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov. 10,

671–684 (2011).

32. Wise, D.R. et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of

alpha-ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. USA 108, 19611–19616 (2011).

33. Metallo, C.M. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature

481, 380–384 (2012).

34. Mullen, A.R. et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria.

Nature 481, 385–388 (2012).

35. Wise, D.R. et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and

leads to glutamine addiction. Proc. Natl. Acad. Sci. USA 105, 18782–18787 (2008).

36. Gao, P. et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and

glutamine metabolism. Nature 458, 762–765 (2009).

37. Yuneva, M., Zamboni, N., Oefner, P., Sachidanandam, R. & Lazebnik, Y. Deficiency in glutamine but not

glucose induces MYC-dependent apoptosis in human cells. J. Cell Biol. 178, 93–105 (2007).

38. Yuneva, M.O. et al. The metabolic profile of tumors depends on both the responsible genetic lesion and

tissue type. Cell Metab. 15, 157–170 (2012).

39. Hu, W. et al. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function.

Proc. Natl. Acad. Sci. USA 107, 7455–7460 (2010).

40. Wang, J.B. et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell

18, 207–219 (2010).

41. Cassago, A. et al. Mitochondrial localization and structure-based phosphate activation mechanism of

Glutaminase C with implications for cancer metabolism. Proc. Natl. Acad. Sci. USA 109, 1092–1097 (2012).

42. Kita, K., Suzuki, T. & Ochi, T. Diphenylarsinic acid promotes degradation of glutaminase C by mitochondrial

Lon protease. J. Biol. Chem. 287, 18163–18172 (2012).

43. Ahluwalia, G.S., Grem, J.L., Hao, Z. & Cooney, D.A. Metabolism and action of amino acid analog

anti-cancer agents. Pharmacol. Ther. 46, 243–271 (1990).

44. Robinson, M.M. et al. Novel mechanism of inhibition of rat kidney-type glutaminase by

bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem. J. 406, 407–414 (2007).

45. Le, A. et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B

cells. Cell Metab. 15, 110–121 (2012).

46. Yang, C. et al. Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose

metabolism or Akt signaling. Cancer Res. 69, 7986–7993 (2009).

47. Peng, G., Dixon, D.A., Muga, S.J., Smith, T.J. & Wargovich, M.J. Green tea polyphenol

(-)-epigallocatechin-3-gallate inhibits cyclooxygenase-2 expression in colon carcinogenesis. Mol. Carcinog. 45, 309–319 (2006).

48. Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast

cancer. Nature 476, 346–350 (2011).

49. Locasale, J.W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to

oncogenesis. Nat. Genet. 43, 869–874 (2011).

50. Tibbetts, A.S. & Appling, D.R. Compartmentalization of Mammalian folate-mediated one-carbon metabolism.

Annu. Rev. Nutr. 30, 57–81 (2010).

51.

(1999). 52.

Liang, X.H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676

Qu, X. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin.

Invest. 112, 1809–1820 (2003).

0. 1. 2. 3. 53.

CAS ISI PubMed Article

Liang, C. et al. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat.

Cell Biol. 8, 688–699 (2006).

0. 1. 2. 3. 54. 0. 1. 2. 3. 55.

(2009). 0. 1. 2.

CAS ISI PubMed Article

Takamura, A. et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 25, 795–800 (2011).

CAS ISI PubMed Article

Mathew, R. et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 137, 1062–1075

CAS ISI PubMed

3. 56.

Article

Lau, A. et al. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction

between Keap1 and p62. Mol. Cell. Biol. 30, 3275–3285 (2010).

0. 1. 2. 57.

CAS PubMed Article

Lum, J.J. et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120,

237–248 (2005).

0. 1. 2. 3. 58.

CAS ISI PubMed Article

Degenhardt, K. et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and

tumorigenesis. Cancer Cell 10, 51–64 (2006).

0. 1. 2. 3. 59.

CAS ISI PubMed Article

Mathew, R. et al. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev.

21, 1367–1381 (2007).

0. 1. 2. 3. 60.

CAS ISI PubMed Article

Karantza-Wadsworth, V. et al. Autophagy mitigates metabolic stress and genome damage in mammary

tumorigenesis. Genes Dev. 21, 1621–1635 (2007).

0. 1. 2. 3.

CAS ISI PubMed Article