材料科学基础 习题 联系客服

发布时间 : 星期六 文章材料科学基础 习题更新完毕开始阅读c030caebb8f67c1cfad6b8da

答案:按第种情况显著挥发

提示:可采用热力学势函数法求得2000K时,各反应式的 6、

是高温导体、金属陶瓷、磨料等不可缺少的原料,以硅石和焦碳为原料制备碳化硅,反应方程:

。试用

的方法计算

及平衡常数,从理论上分析该反应在什么

和平衡常数K进行比较。

温度下才能进行? 答案:

=495325.76

,K=1.55

,反应在2021K时可开始反应

=0时,反应才能出现转折。

提示:由计算得知,>0,此过程为吸热过程,故必须提高温度,至

第六章 相平衡

1、 解释下列名词:凝聚系统,介稳平衡,低共熔点,双升点,双降点,马鞍点,连线规则,切线规则,三角形规则,重心规则。 解:凝聚系统:不含气相或气相可以忽略的系统。

介稳平衡:即热力学非平衡态,能量处于较高状态,经常出现于硅酸盐系统中。

低共熔点:是一种无变量点,系统冷却时几种晶相同时从熔液中析出,或加热时同时融化。 双升点:处于交叉位的单转熔点。 双降点:处于共轭位的双转熔点。

马鞍点:三元相图界线上温度最高点,同时又是二元系统温度的最低点。

连线规则:将一界线(或其延长线)与相应的连线(或其延长线)相交,其交点是该界线上的温度最高点。

切线规则:将界线上某一点所作的切线与相应的连线相交,如交点在连线上,则表示界线上该处具有共熔性质;如交点在连线的延长线上,则表示界线上该处具有转熔性质,远离交点的相被回吸。

三角形规则:原始熔体组成点所在副三角形的三个顶点表示的物质即为其结晶产物;与这三个物质相应的初初晶区所包围的三元无变量点是其结晶结束点。

重心规则:如无变点处于其相应副三角形的重心位,则该无变点为低共熔点:如无变点处于其相应副三角形的交叉位,则该无变点为单转熔点;如无变点处于其相应副三角形的共轭位,则该无变点为双转熔点。 2、 从SiO2的多晶转变现象说明硅酸盐制品中为什么经常出现介稳态晶相?

解:在573℃以下的低温,SiO2的稳定晶型为b -石英,加热至573℃转变为高温型的a -石英,这种转变较快;冷却时在同一温度下以同样的速度发生逆转变。如果加热速度过快,则a -石英过热而在1600℃时熔融。如果加热速度很慢,则在870℃转变为a -鳞石英。a -鳞石英在加热较快时,过热到1670℃时熔融。当缓慢冷却时,在870℃仍可逆地转变为a -石英;当迅速冷却时,沿虚线过冷,在163℃转变为介稳态的b -鳞石英,在117℃转变为介稳态的g -鳞石英。加热时g -鳞石英仍在原转变温度以同样的速度先后转变为b -鳞石英和a -鳞石英。a -鳞石英缓慢加热,在1470℃时转变为a -方石英,继续加热到1713℃熔融。当缓慢冷却时,在1470℃时可逆地转变为a -鳞石英;当迅速冷却时,沿虚 线过冷,在180~270℃转变为介稳状态的b -方石英;当加热b -方石英仍在180~270℃迅速转变为稳定状态的a -方石英。熔融状态的SiO2由于粘度很大,冷却时往往成为过冷的液相--石英玻璃。虽然它是介稳态,由于粘度很大在常温下可以长期不变。如果在1000℃以上持久加热,也会产生析晶。熔融状态的SiO2,只有极其缓慢的冷却,才会在1713℃可逆地转变为a -方石英。对SiO2的相图进行分析发现,SiO2的所有处于介稳状态的熔体的饱和蒸汽压都比相同温度范围内处于热力学稳定态的熔体的饱和蒸汽压高。而理论和实践证明,在给定的温度范围,具有最小蒸汽压的相一定是最稳定的相。所以由于晶型转变速度不同,在不同的加热或冷却速率下,硅酸盐制品中经常出现介稳态晶相。

3、 SiO2具有很高的熔点,硅酸盐玻璃的熔制温度也很高。现要选择一种氧化物与SiO2在800℃的低温下形成均一的二元氧化物玻璃,请问,选何种氧化物?加入量是多少? 解:根据Na2O-SiO2系统相图可知最低共熔点为799℃。故选择Na2O能与SiO2在800℃的低温下形成均一的二元氧化物玻璃。

4、具有不一致熔融二元化合物的二元相图〔图10-12(c)〕在低共熔点E发生如下析晶过程:LA+C,已知E点的B含量为20%,化合物C的B含量为64%。今有C1,C2两种配料,已知C1中B含量是C2中B含量的1.5倍,且在高温熔融冷却析晶时,从该二配料中析出的初相(即达到低共熔温度前析出的第一种晶体)含量相等。请计算C1,C2的组成。

?

解:设C2中B含量为x, 则C1中B含量为1.5x,由题意得:

所以C1组成B含量为26%,C2组成B含量为17.3%。

5、已知A,B两组分构成具有低共熔点的有限固溶体二元相图〔图10-12(i)〕。试根据下列实验数据绘制相图的大致形状:A的熔点为1000℃,B的熔点为700℃。含B为0.25mol的试样在500℃完全凝固,其中含0.733 mol初相α和0.267mol(α+β)共生体。含B为0.5mol的试样在同一温度下完全凝固,其中含0.4 mol初相α和0.6mol(α+β)共生体,而α相总量占晶相总量的50%。实验数据均在达到平衡状态时测定。 解:设C点含B为x%,E点含B为y%,D点含B为z%,由题意借助杠杆规则得关系式:

解得: x=5.1% y=79.9% z=94.9%

由此可确定C、D、E三点的位置,从而绘出其草图。

6、 在三元系统的浓度三角形上画出下列配料的组成点,并注意其变化规律。

1. A=10%, B=70%, C=20%(质量百分数,下同) 2. A=10%, B=20%, C=70% 3. A=70%, B=20%, C=10%

今有配料(1)3kg,配料(2)2kg,配料(3)5kg,若将此三配料混合加热至完全熔融,试根据杠杆规则用作图法求熔体的组成。

解:根据题中所给条件,在浓度三角形中找到三个配料组成点的位置。连接配料(1)与配料(2)的组成点,按杠杆规则求其混合后的组成点。再将此点与配料(3)的组成点连接,此连线的中点即为所求的熔体组成点。

7、 图〔10-24(e)〕是具有双降升点的生成一个不一致熔融三元化合物的三元相图。 请分析1,2,3点的析晶路程的各自特点,并在图中用阴影标出析晶时可能发生穿相区的组成范围。组成点n在SC连线上,请分析它的析晶路程。

解:熔体1的析晶路程:

熔体2的析晶路程:

熔体3的析晶路程;

8、 在(图10-36)中: (1).划分副三角形;

(2).用箭头标出界线上温度下降的方向及界线的性质; (3).判断化合物的性质;

(4).写出各无变量点的性质及反应式;分析M点的析晶路程,写出刚到达析晶终点时各晶相的含量。 解:(1)、(2)见图解;

(3)S1不一致熔融化合物,S2一致熔融化合物,S3不一致熔融化合物,S4不一致熔融化合物,S5一致熔融化合物,S6一致熔融化合物。 (4) E为单转熔点:L+C ? S6+S5 F为双转熔点:L ? S4-S6-S5 G为单转熔点:L+S6? S3+S4 H为单转熔点:L+S4? S3+S5

9、分析相图(图10-37)中点1、2熔体的析晶路程。( 注:S、1、E 在一条直线上)。

解:熔体1具有穿相区的特征,液相在E3点反应完,固相只剩S一个相,所以穿过S相区,最终在E2点结束。 熔体2液相在E3点反应完,固相剩S和B两个相,无穿相区情况,最终在E2点结束。

10、 在Na2O-CaO-SiO2相图(图10-35)中: (1)划分出全部的副三角形;

(2)判断界线的温度变化方向及界线的性质; (3)写出无变量点的平衡关系式;

(4)分析并写出M点的析晶路程(M点在CS与NC3S6连线的延长线上,注意穿相区的情况)。

解:⑴、⑵见图解; ⑶见下表:

表10-14 Na2O-CaO-SiO2系统富硅部分的无变量点的性质

化学组成(wt%) 图中点号 相平衡 平衡性质 平衡温度(℃) Na2O Al2O3 SiO2 1 L?NS+NS+NCS 223低共熔点 821 37.5 1.8 60.7 2 L+NC2S3? NS+NCS 223双升点 827 36.6 2.0 61.4 3 L+NC2S3? NS+NCS 236双升点 785 25.4 5.4 69.2 4 L+NC3S6? NS+NCS 252385双升点 785 25.0 5.4 69.6 5 L ?NS+NS+ NCS ?NS+ NCS+S(石英) 385低共熔点 755 24.4 3.6 72.0 6 L 低共熔点 755 22.0 3.8 74.2 7 L +S(石英)+NC3S6? NCS 536双降点 827 19.0 6.8 74.2 8 α石英?α磷石英(存在L及NCS) 晶型转变 870 18.7 7.0 74.3 9 L+βCS? NCS +S(石英) 36双升点 1035 13.7 12.9 73.4 10 L+βCS? NCS + NCS 2336双升点 1035 19.0 14.5 66.5 11 αCS?βCS(存在L及α磷石英) ?βCS(存在L及NCS) 23晶型转变 1110 14.4 15.6 73.0 12 αCS晶型转变 1110 17.7 16.5 62.8

(4)M点位于△NC3S6-NS2-NCS5内,在4点析晶结束,最终晶相为:NC3S6、NS2NCS5。开始析出βCS,经过晶型转变、转熔等一系列反应,连穿三个相区,最终在4点析晶结束。

11、一个陶瓷配方,含长石(K2O2Al2O326SiO2)39%,脱水高岭土(Al2O322SiO2)61%,在1200℃烧成。问:(1) 瓷体中存在哪几相?(2) 所含各相的重量百分数是多少?

解:在K2O-Al2O3-SiO2系统相图的配料三角形(图10-32)中根据长石与脱水高岭土的含量确定配料组成点,然后在产物三角形(图10-32)找最终平衡相,根据杠杆规则计算各相组成。

12、凝聚系统三元相图中液相面、分界曲线其自由度是多少?哪些变量可以改变?

答:液相面F=3-2+1=2,温度、组成两个变量可以改变。分界曲线F=3-3+1=1,一个变量可以改变。

13、纯物质在任意指定温度下,固、液、气三相可以平衡共存,请用相律说明这个结论是否正确?请举例说明。

答:这个结论不正确。因为,固、液、气三相平衡时,相律为:F=C-P+2,其中,C=1,P=3,则F=0,即自由度为0温度和压力均不可以变化。这时不能够指定温度。例如:水在0度时是三相共存,温度一变固、液、气三相就不平衡了。所以温度不能任意指定温度。 14、在下面相图中

(1) 画出此相图的b、c点相对应的副三角形?

b点对应的副三角形SiO2-KAS6-A3S2,c点对应的副三角形KAS4-KAS6-A3S2 (2)画出交于b、c点的界线的温度下降方向? 见图

(3)找出交于b、c点的界线一致分界曲线和不一致分界曲线? c-a为不一致分界曲线,其他为一致分界曲线

(4)判断三元无变点b、c点的性质?

b点为最低共熔点;c点为双升点也叫单转熔点,KAS4(白榴石)被转熔(回吸)。 (5) P点的最后析晶产物是什么?

P点的最后析晶产物是SiO2(石英)-KAS6(钾长石)-A3S2(莫来石)。 (6) 液相组成点到达分界曲线的瞬间,其固相量和液相量分别是多少? 固相量=(p- A3S2)/(e-A3S2)3100% 液相量=(p-e)/(e-A3S2)3100%

(7) 在石英的相变中,属于重建型相变的是 (A) ,属于位移式相变的是 (B) 。 a.α-石英→α-鳞石英 b.α-石英→β-石英

c.α-鳞石英→α-方石英 d.α方石英→β-方石英

三题图 四题图

15、在下面相图中

(1) 画出此相图的h、k、f点相对应的副三角形? CaO-C3S-C3A,C2S-C3S-C3A, C2S-C12A7-C3A

(2) 画出交于h、k、f点的界线的温度下降方向? 见图。

(3) 找出交于h、k、f点的界线一致分界曲线和不一致分界曲线? 见图:cd为不一致分界曲线,CaO被转熔(回吸),反应式:L+CaO=C3S ch为一致分界曲线,反应式:L =C3S+CaO be为一致分界曲线,反应式:L=C2S+C3S bk为不一致分界曲线,C3S被转熔(回吸),反应式:L+C3S=C3A+C2S

(4) 判断三元无变点h、k、f点的性质?h双升点,CaO被转熔、k双升点C3S被转熔、f最低共熔点。 (5) 1点的最后析晶产物是什么? 图中1点的最后析晶产物是k点C2S-C3S-C3A。 (6) 2点的液相组成点到达终点的瞬间,其固相量和液相量分别是多少?

图中2点的液相组成点到达(k点结束)终点的瞬间,其固相量=2k/ka,液相量=2a/ka。 16、(20分)A-B-C三元相图如附图所示

(1) 说明D、E、F、G、H、I六个化合物的性质;

答:D不一致熔融三元化合物,E不一致熔融三元化合物,F不一致熔融二元化合物,G一致熔融二元化合物,H不一致熔融二元化合物,I一致熔融二元化合物。 (2) 画出有意义的副三角形(如图所示)。

(3) 用单、双箭头表示界线的性质(ST为晶型转变界线);

如图所示(其中C-D相界线均为转熔线,但温度走向不同)。 ##

(4) 分析1、2熔体的冷却平衡结晶过程并写出相变式。(附相图见后)

(5) 熔体1#、2#的冷却平衡结晶过程如下: 1# L→I L+I→H L→H L→H+B

液:1—→a——→b——→d——→e始(Le→B+H+G)→e终 f=2 f=1 f=2 f=1 f=0 I I+H H H+B H+B+G

固:I—→I——→H——→H——→f——————→1

2# L→Cα L→Cβ L+C→D L→D+A

液:2—→g(Cα→Cβ)——→h——→k始(Lk+C→D+A)→k终——→m始(Lm+D+A→E)→m终 f=2 f=2 f=1 f=0 f=1 f=0 Cα Cβ Cβ+D C+D+A D+A D+A+E 固:C——→C—————→C——→n——————→p———→q——————→2

17、下图为CaO-A12O3-SiO2系统的富钙部分相图,对于硅酸盐水泥的生产有一定的参考价值。试: (1) 画出有意义的付三角形;(如图所示); (2) 用单、双箭头表示界线的性质;(如图所示;)

(3) 说明F、H、K三个化合物的性质和写出各点的相平衡式; F点低共熔点,LF→C3A+C12A7+C2S H点单转熔点,LH+CaO→C3A+C3S K点单转熔点,LK+C3S→C3A+C2S

(4) 分析M#熔体的冷却平衡结晶过程并写出相变式; M点:

L→C2S L→C2S+C3S L+C2S→C3S

液:M---→a----→y----→K始(LK+C3S→C2S+C3A)→K终 f=2 f=1 f=1 f=0

C2S C2S+C3S C2S+C3S C2S+C3S+C3A

固:D---→D----→b----→d---------→M

(5) 并说明硅酸盐水泥熟料落在小圆圈内的理由;

因为硅酸盐水泥熟料中三个主要矿物是C3S、C2S、C3A。根据三角形规则,只有当组成点落在C3S-C2S-C3A付三角形中,烧成以后才能得到这三种矿物。从早期强度和后期强度、水化速度、矿物的形成条件等因素考虑,水泥熟料C3S的含量应当最高,C2S次之,C3A最少。根据杠杆规则,水泥熟料的组成点应当位于C3S-C2S-C3A付三角形中小圆圈内。 (6) 为何在缓慢冷却到无变量点K(1455℃)时再要急剧冷却到室温?(20分)

因为缓慢冷却到K点,可以通过转熔反应L+C2S→C3S得到尽可能多的C3S。到达K点后,急剧冷却到室温,可以(1)防止C3S含量降低,因为K点的转熔反应LK+C3S→C2S+C3A;(2)使C2S生成水硬性的β-C2S,

而不是非水硬性的γ-C2S;(3)液相成为玻璃相,可以提高熟料的易磨性。