西北工业大学《材料科学基础》课后题答案 联系客服

发布时间 : 星期日 文章西北工业大学《材料科学基础》课后题答案更新完毕开始阅读c041afe46bdc5022aaea998fcc22bcd127ff425e

力学估算,裂纹尖端的最大应力已达到理论断裂强度或理论屈服强度(因为陶瓷晶体中可动位错很少,而位错运动又很困难,故一旦达到屈服强度就断裂了)。反过来,也可以计算当裂纹尖端的最大应力等于理论屈服强度时,晶体断裂的名义应力,它和实际得出的抗拉强度极为接近。陶瓷的压缩强度一般为抗拉强度的15倍左右。这是因为在拉伸时当裂纹一达到临界尺寸就失稳扩展而断裂;而压缩时裂纹或者闭合或者呈稳态地缓慢扩展,并转向平行于压缩轴。即在拉伸时,陶瓷的抗拉强度是由晶体中的最大裂纹尺寸决定的,而压缩强度是由裂纹的平均尺寸决定的。

18. 玻璃态高聚物在Tb~Tg之间或部分结晶高聚物在Tg~Tm之间的典型拉伸应力—应变曲线表明,过了屈服点之后,材料开始在局部地区(如应力集中处)出现颈缩,再继续变形时,其变形不是集中在原颈缩处,使得该处愈拉愈细,而是颈缩区扩大,不断沿着试样长度方向延伸,直到整个试样的截面尺寸都均匀减小。在这一段变形过程中应力几乎不变,如附图所示。

在开始出现颈缩后,继续变形时颈缩沿整个试样扩大,这说明原颈缩处出现了加工硬化。X射线证明,高聚物中的大分子无论是呈无定形态还是呈结晶态,随着变形程度的增加,都逐渐发生了沿外力方向的定向排列。由于键的方向性(主要是共价键)在产生定向排列之后,产生了应变硬化。

把已冷拉高聚物的试样加热到Tg以上,形变基本上全能回复。这说明非晶态高聚物冷拉中产生的形变属高弹性形变范畴。部分结晶高聚物冷拉后残留的形变中大部分必须升温至丁-附近时才能回复。这是因为部分结晶高聚物的冷拉中伴随着晶片的排列与取向,而取向的晶片在Tm以下是热力学稳定的。

19. 银纹不同于裂纹。裂纹的两个张开面之间完全是空的,而银纹面之间由高度取向的纤维束和空穴组成,仍具有一定的强度。银纹的形成是由于材料在张应力作用下局部屈服和冷拉造成。

1. 可用金相法求再结晶形核率N和长大线速度G。具体操作:

(1) 测定N:把一批经大变形量变形后的试样加热到一定温度(丁)后保温,每隔一定时间t,取出一个试样淬火,把做成的金相样品在显微镜下观察,数得再结晶核心的个数N,得到一组数据(数个)后作N—t图,在N—t曲线上每点的斜率便为此材料在温度丁下保温不同时间时的再结晶形核率N。

(2) 测定G:将(1)中淬火后的一组试样进行金相观察,量每个试样(代表不同保温时间)中最大晶核的线尺寸D,作D—t图,在D—t曲线上每点的斜率便为了温度下保温不同时间时的长大线速度G。

2. 再结晶退火必须用于经冷塑性变形加工的材料,其目的是改善冷变形后材料的

组织和性能。再结晶退火的温度较低,一般都在临界点以下。若对铸件采用再结晶退火,其组织不会发生相变,也没有形成新晶核的驱动力(如冷变形储存能等),所以不会形成新晶粒,也就不能细化晶粒。 3. 能。可经过冷变形而后进行再结晶退火的方法。 4. 答案如附表所示。

附表 冷变形金属加热时晶体缺陷的行为

缺陷表现、物理变化 冷加工变形时主要的形变方式是滑移,由于滑移,晶体中空位和位错密度增加,位错分布不均匀 回复 空位扩散、集聚或消失;位错密度降低,位错相互作用重新分布(多边化) 再结晶 毗邻低位错密度区晶界向高位错密度的晶粒扩张。位错密度减少,能量降低,成为低畸变或无畸变区 晶粒长大 弯曲界面向其曲率中心方向移动。微量杂质原子偏聚在晶界区域,对晶界移动起拖曳作用。这与杂质吸附在位错中组成柯氏气团阻碍位错运动相似,影响了晶界的活动性 切应力作用 晶体缺陷的行为 缺陷运动驱动力 弹性畸变能 形变储存能 晶粒长大前后总的界面能差,而界面移动的驱动力是界面曲率 5. (1)铜片经完全再结晶后晶粒大小沿片长方向变化示意图如附图所示。由于铜片

宽度不同,退火后晶粒大小也不同。最窄的一端基本无变形,退火后仍保持

原始晶粒尺寸;在较宽处,处于临界变形范围,再结晶后晶粒粗大;随宽度增大,变形度增大,退火后晶粒变细,最后达到稳定值。在最宽处,变形量很大,在局部地区形成变形织构,退火后形成异常大晶粒。

(2)变形越大,冷变形储存能越高,越容易再结晶。因此,在较低温度退火,在较宽处先发生再结晶。

6. 再结晶终了的晶粒尺寸是指再结晶刚完成但未发生长大时的晶粒尺寸。若以再

结晶晶粒中心点之间的平均距离d表征再结晶的晶粒大小,则d与再结晶形

Gd?k[]4N 核率N及长大线速度之间有如下近似关系:

1且

N?N0exp(?QnQ), G?G0exp(?n)RTRT

由于Qn与Qg几乎相等,故退火温度对G/N比值的影响微弱,即晶粒大小是退火温度的弱函数。故图中曲线中再结晶终了的晶粒尺寸与退火温度关系不大。

再结晶完成以后,若继续保温,会发生晶粒长大的过程。对这一过程而言,退火温度越高,(保温时间相同时)退火后晶粒越大。这是因为晶粒长大过程是通过大角度晶界的移动来进行的。温度越高,晶界移动的激活能就越低,晶界平均迁移率就越高,晶粒长大速率就越快,在相同保温时间下,退火后的晶粒越粗大,这与前段的分析并不矛盾。

8. 前种工艺,由于铝件变形处于临界变形度下,故退火时可形成个别再结晶核心,

最终晶粒极为粗大,而后种工艺,是由于进行再结晶退火时的温度选择不合理(温度过高),若按T再=熔估算,则T再=100℃,故再结晶温度不超过200℃为宜。由于采用630℃退火1 h,故晶粒仍然粗大。

综上分析,在80%变形量条件下,采用150℃退火1 h,则可使其晶粒细化。 9. 前者采用去应力退火(低温退火);后者采用再结晶退火(高温退火)。

10. 去应力退火过程中,位错通过攀移和滑移重新排列,从高能态转变为低能态;

动态回复过程中,则是通过螺位错的交滑移和刃位错的攀移,使异号位错相互抵消,保持位错增殖率与位错消失率之间的动态平衡。

从显微组织上观察,静态回复时可见到清晰的亚晶界,静态再结晶时形成等轴晶粒;而动态回复时形成胞状亚结构,动态再结晶时等轴晶中又形成位错缠结胞,比静态再结晶晶粒要细。

11. 一是不在两相区变形;二是减少夹杂元素含量;三是采用高温扩散退火,消

除元素偏析。对已出现带状组织的材料,在单相区加热、正火处理,则可予以消除或改善。

12. 金属材料在热加工过程中经历了动态变形和动态回复及再结晶过程,柱状晶

区和粗等轴晶区消失了,代之以较细小的等轴晶粒;原铸锭中许多分散缩孔、微裂纹等由于机械焊合作用而消失,显微偏析也由于压缩和扩散得到一定程度的减弱,故使材料的致密性和力学性能(特别是塑性、韧性)提高。 13. 可以在钨丝中形成弥散、颗粒状的第二相(如ThO2)以限制晶粒长大。因为若

R?4r3?(1?cos?)(α为接

ThO2的体积分数为φ,半径为r时,晶粒的极限尺寸

触角);若选择合适的φ和r,使R尽可能小,即晶粒不再长大。由于晶粒细化将使灯丝脆性大大下降而不易破断,从而有效地延长其寿命。

15.(1)不对。对于冷变形(较大变形量)后的金属,才能通过适当的再结晶退火细化晶粒。

(2) 不对。有些金属的再结晶温度低于室温,因此在室温下的变形也是热变

形,也会发生动态再结晶。

(3) 不对。多边化过程中,空位浓度下降、位错重新组合,致使异号位错互

相抵消,位错密度下降,使点阵畸变减轻。

(4) 不对。如果在临界变形度下变形的金属,再结晶退火后,晶粒反而粗化。 (5) 不对。再结晶不是相变。因此,它可以在一个较宽的温度范围内变化。 (6) 不对。微量熔质原子的存在(20#钢中WC=,会阻碍金属的再结晶,从而

提高其再结晶温度。

(7) 不对。只有再结晶过程才是形核及核长大过程,其驱动力是储存能。