纳米碳管研究进展及其应用 联系客服

发布时间 : 星期日 文章纳米碳管研究进展及其应用更新完毕开始阅读c2a8db2c0066f5335a812176

纳米碳管研究进展及其应用

摘要:纳米碳管的发现是碳团簇领域的又一重大科研成果,本文探讨了碳纳米管的结构、特性、制备、应用、进展研究、前景等。 关键词:新型碳材料,纳米碳管,性质,应用 1.纳米碳管发展背景

碳元素广泛存在于茫茫苍穹的宇宙间和浩瀚无垠的地球上,碳是地球上构成化合物种类最多的元素之一,是一切生物有机体的骨架元素,也可以说没有碳元素就没有生命。碳材料具有比重小、耐热、耐腐蚀、耐热冲击、导电、传热性好、高温强度、自润滑性、生体相容性等一系列其它材料所没有的综合特性,被认为是面向21世纪的极有发展前途的新材料。特别是随着新型碳材料的不断开发和发现,使碳材料研究在全球材料科学界、物理界和化学界受到了广泛关注。碳材料由于其结构的多样性,导致其性能的多样化,在环保,能源,制造业,国防等领域得到了广泛的应用。

纳米碳管(如图一)就是其中一种新型碳材料,也是纳米材料,纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料。

图一:纳米碳管示意图

- 1 -

2.纳米碳管的分类

碳纳米管按照石墨烯片的层数分类可分为:单壁碳纳米管(Single-walled nanotubes, SWNTs)和多壁碳纳米管(Multi-walled nanotubes, MWNTs),多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常布满小洞样的缺陷。与多壁管相比,单壁管是由单层圆柱型石墨层构成,其直径大小的分布范围小,缺陷少,具有更高的均匀一致性。 3.纳米碳管的结构

图二

纳米碳管中的碳原子以sp2杂化,但是由于存在一定曲率所以其中也有一小部分碳属sp3杂化,(如图二)。在不考虑手性的情况下, 单壁纳米碳管可以由两个参量完全确定(直径和螺旋角或两个表示石墨烯的指数(n,m)或者螺旋向量Cn和垂直向量T〕。

图三

理想纳米碳管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体。石墨烯的片层一般可以从一层到上百层,含有一层石墨烯片层的称为单壁纳米碳管,多于一层的则称为多壁纳米碳管(如图三)。单壁纳米碳管的直径一般为1-6nm,

- 2 -

最小直径大约为0.5nm,与C36分子的直径相当, 但单壁纳米碳管的直径大于6nm以后特别不稳定,会发生单壁纳米碳管管的塌陷,长度则可达几百纳米到几个微米。因为单壁纳米碳管的最小直径与富勒烯分子类似,故也有人称其为巴基管或富勒管。 多壁纳米碳管的层间距约为0.34纳米,直径在几个纳米到几十纳米,长度一般在微米量级,最长者可达数毫米。由于纳米碳管具有较大的长径比,所以可以把其看成为准一维纳米材料。 4. 纳米碳管的性质 4.1.电学性质

由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。理论预测其导电性能取决于其管径和管壁的螺旋角。 4.2.力学性能

墨烯平面中碳碳键是自然界中已知的最强的化学键之一,石墨中C11的弹性常数达1060GPa。纳米碳管的结构是比较完整的石墨烯网格,而且由于缺陷很少, 单壁纳米碳管的强度应该接近于碳碳键强度。理论计算表明单壁纳米碳管的杨氏模量与其直径以及螺旋角无关,杨氏模量和剪切模量与金刚石相当,强度可以达到1.0TPa以上。其强度大约为钢的100倍,而密度却只有钢的1/6。所以纳米碳管具有优异的力学性能。 4.3.热学性能

一维管具有非常大的长径比,因而大量热是沿着长度方向传递的,通过合适的取向,这种管子可以合成高各向异性材料。虽然在管轴平行方向的热交换性能很高,但在其垂直方向的热交换性能较低。纳米管的横向尺寸比多数在室温至150℃电介质的品格振动波长大一个量级,这使得弥散的纳米管在散布声子界面

- 3 -

的形成中是有效的,同时降低了导热性能。适当排列碳纳米管可得到非常高的各向异性热传导材料。 5.纳米碳管的制备

纳米碳管主要制备法方法有电弧法,激光蒸发法,化学气相淀积法,固相热解法、辉光放电法和气体燃烧法等以及聚合反应合成法。电弧放电法(如图四)是生产碳纳米管的主要方法。电弧法与Wolfgang-Kratschmer法制备富勒烯类似,在惰性气体气氛中,两根石墨电极直流放电,阴极上产生纳米碳管。使用这一方法制备碳纳米管技术上比较简单,但是生成的碳纳米管与C60等产物混杂在一起,很难得到纯度较高的碳纳米管,并且得到的往往都是多层碳纳米管,而实际研究中人们往往需要的是单层的碳纳米管。此外该方法反应消耗能量太大。激光刻蚀法采用激光刻蚀高温炉中的石墨靶子,纳米碳管就存在于惰性气体夹带的石墨蒸发产物中。近年来发展出了化学气相淀积法,或称为碳氢气体热解法,在一定程度上克服了电弧放电法的缺陷。这种方法是让气态烃通过附着有催化剂微粒的模板,在800~1200度的条件下气态烃可以分解生成碳纳米管。这种方法突出的优点是残余反应物为气体,可以离开反应体系,得到纯度比较高的碳纳米管,同时温度亦不需要很高,相对而言节省了能量。但是制得的碳纳米管管径不整齐,形状不规则,并且在制备过程中必须要用到催化剂。

- 4 -