国内外果园采摘机械研究及发展趋势探讨 联系客服

发布时间 : 星期日 文章国内外果园采摘机械研究及发展趋势探讨更新完毕开始阅读d30df0355a8102d276a22f74

华南农业大学文献综述

国内外果园采摘机械研究及发展趋势探讨

孔庆军

(华南农业大学 工程学院 广东广州 510642 )

摘要:机械化、智能化农业是21世纪农业生产方式的代表性变化,在新世纪要提高农业现代化水平必须积极地推进农业机械化技术创新。而水果种植业是现代农业的重要组成部分;果园的采摘机械是解决果园采摘作业难的有效手段。本文说明了果实机械化采摘的意义,详细介绍了国内外机械式采摘的发展历程、主要的采摘方式、采摘机械装置、系统组成,以及从采摘机器人机械手的设计、末端执行器的设计、行走装置的设计、果实的识别和定位方面分析了果实采摘机器人的国内外发展现状;并指出了我国果园采摘机械发展中存在的问题,最后分析了果园采摘机械的发展趋势。 关键词:果园;机械采摘;机器人采摘;劳动力;经济效益;机械化;智能化

Domestic and foreign fruit picking mechanical research and trend of

development Kong Qingjun

(South China Agricultural University Institute of Guangdong Guangzhou

510642)

Abstract: intelligent agriculture mechanization, twenty-first Centuries is the representative change of agricultural production, in the new century is to improve the level of agricultural modernization must actively promote

agricultural mechanization technology innovation. While planting fruit industry is the important part of modern agriculture; orchard picking machine is to solve the orchard picking operation difficult effective way. This paper illustrates the fruit mechanization picking the significance, domestic and foreign are

introduced. Mechanical picking the development course, main picking, picking mechanical device, system composition, as well as from picking robot

manipulator, end-effectors design, walking device design, fruit identification and localization of fruit picking robot at home and abroad to develop the current

1

国内外果园采摘机械研究及发展探讨

situation, pointed out our country orchard picking machine the problem that exists in development, analyzes the development trend of fruit picking machine. Key words: orchard; picking machine; robot pickers; labor; economic benefits; mechanization; intelligent

引言

随着计算机和自动化控制技术的迅速发展,农业机械化、自动化、智能化趋势越发明显。机器人技术已渗透到农业生产当中,特别像水果种植业这种对机械化要求比较高的生产中尤为明显,机械化、智能化生产工具的应用将成为21世纪现代化农业的重要标志。

我国是世界第一大水果生产国和消费国。2008年我国的水果产量已经超过6000万吨,约占全球产量的14%。水果种植业的迅速发展对果园机械化和智能化提出了更为严格的要求,同时也促进了其市场需求的进一歩扩大。而水果采摘作业所用劳动力占整个生产过程所用劳动力的33%-50%,目前我国的水果采摘主要是以人工为主,由于采摘作业比较复杂且季节性差异明显,人工采摘不仅效率低,劳动量大,易对果实造成损伤,而且可能因劳动力不足导致采摘不及时从而产生不必要的经济损失。

此外,由于现在农村劳动力逐渐向社会其他行业转移,世界各国都面临着人口老龄化问题,劳动力不足将成事实。使用机械不仅提高了效率,降低了损伤率,节省了大量劳动力成本,而且也提高了果园的经济效益。因此研究果园机械尤其是水果采摘机械具有重要的意义和巨大经济效益以及广阔的市场前景。

1 国外果园采摘机械现状

1.1 机械式采摘

1.1.1机械式采摘的分类

果园机械式采摘工具主要有振摇式、撞击式和切割式三种类型。

振摇式是利用外力使树体或树枝产生振动或振摇,让果实产生适合加速度,然后使其在连结最弱处与果枝分离、掉落。

撞击式是撞击部件直接冲撞果枝或敲打牵引果枝的棚架振落果实。

切割式是将树枝或果柄切断使果实与果树分离的方式,又分为机械切割式和动力切割式。

1.1.2机械式采摘工具的现状

以美国、法国、英国为首的西方国家从上世纪40年代初就开始对果园采摘机械进行研究, 40 年代中期美国开始研究振动摇摆式机械,用来采摘胡桃和杏等水果,到50 年代中期,利用振摇果树方式收获水果的采摘机械在欧美国家得到了普遍应用,并且出现

2

华南农业大学文献综述

了以拖拉机驱动的振摇采摘机。至60 年代,振摇采摘机械的结构由单一的定冲程推摇机发展到惯性式振摇机、气力振摇机、使用动力驱动橡胶棒冲撞果枝振落果实的撞击式等多种类型的果园采摘机械。由于当时的机械采摘工作效率普遍较低,损伤率较高,不适用于采收易损伤、要求完好率高的鲜食水果和贮藏用水果。60 年代中期,美国研究出配合采摘工具使用的液压升降平台车,使采摘效率有了大幅度提高。从60 年代后期开始,欧美一些国家将水果采摘机械与果树的培育、修剪结合起来研究,比如修整树形使其适合机械化作业。70 年代出现了各种动力切割式采摘机械,例如油锯、气动剪。比较著名的气动剪厂商有瑞士的FELCO 公司,意大利的CAMPAGNOLA 公司,日本的ARS 公司等。

日本的山地和丘陵面积占其国土总面积的 71%,果园种植地形类似于我国南方地形,许多在平地上使用的果园机械在丘陵地形上并不适用。因此日本在20 世纪90 年代初开始研究陡坡地果园的机械化。四国农业试验场研制的采用枢轴式摆动悬挂机构作为行走部分的自走式采摘车,使用电视摄像机和无线电控制组合。该采摘车的轮距宽,重心低,故爬坡能力强;采用就地车轮正反转机构,故回转能力好;采用枢轴悬挂机构,因而使机体摆动小、行走稳定,适合在坡度15~30°的地区使用。

[2]

[1]

1.2 机器人采摘

1.2.1机器人采摘的研究现状

目前国外对采摘机械的研究主要是以采摘机器人为主。70 年代末期,随着计算机和自动控制技术的迅速发展,美国首先开始研究各种农业机器人。自1983 年第一台采摘机器人在美国诞生以来,历经了20 多年的研究和试验,以日本为代表的发达国家,包括美国、法国、荷兰、英国、西班牙等国相继试验成功了多种采摘机器人,如苹果、柑桔、番茄、西瓜和葡萄等具有人式智能的果实采摘机器人1.2.2人机协作型研究思想

人机协作型研究思想是指由人来完成采摘机器人寻找、定位待摘果实以及机器人导航任务,机器人的运动轨迹规划、关节控制和末端执行器控制等任务由机器人的控制系统完成。西班牙工业自动化研究所基于人机协作思想开发的柑橘采摘机器人Agribot,如图1 所示

[5][6]

[3][4]

3

国内外果园采摘机械研究及发展探讨

图 1 人机协作型采摘机器人结构

Fig.1 Configuration of the robotic fruit harvester agribot

该机器人由操作台、轮式移动机构、机械手、末端执行器、激光测距仪和控制系统等组成。操作人员采摘果实后,利用游戏杆操纵移动/倾斜机构,使激光测距仪的激光束对准果实,获取待采摘果实的坐标,并将其放入一动态数据区。控制系统从动态数据区中取出坐标数据,并和机械手末端执行器的当前坐标进行比较,规划最优采摘路径的同时控制关节轴电机的运动,使机械手末端执行器到达指定位置。

合理的人机分工与协作不仅增强了智能机器人处理突发事件的能力和系统的鲁棒性,还可以在不增加系统复杂程度和成本的前提下,提高采摘成功率。人机协作型采摘机器人的研究具有现实意义,它不仅提高了采摘机器人的采摘效率和成功率,还能大幅度降低系统成本,有利于尽早实现采摘机器人的产业化。 1.2.3机器人采摘的主要组成部分及发展现状

采摘机器人主要由机械手、末端执行器、视觉识别系统和行走装置等四大系统组成。 80 年代中期首先是日本的京都大学Noboru Kawamura 等人研制了五自由度关节型机械手,但这种机械手的工作空间并没有包含所有果实的位置,而且机械手末端执行器的可操作度也低。同时韩国研制的苹果采摘机器人采用了极坐标机械手,旋转关节可左右移动,丝杆关节可以上下移动,从而工作空间可达3m。20 世纪90 年代,日本岗山大学Naoshi Kondo 等人在番茄采摘机器人上使用了具有7 个自由度的能够指定采摘姿态的机械手

[10]

[9]

[8]

[7]

,自由度越高,其手部运动越灵活,控制越复杂。

末端执行器类似于人的手指,其设计采用了仿生学,即末端执行器结构取决于采摘对象的生物特性、理化特性,手指的数量和形状与果实的外形特征密切相关。对于摘取方式,多数采摘机器人使用剪刀剪断果柄或直接用手爪拧断果柄,荷兰农业环境工程研

4