植物生理学题库汇总 联系客服

发布时间 : 星期六 文章植物生理学题库汇总更新完毕开始阅读d6cd9ff2fad6195f302ba62f

2+

钙调蛋白CaM:是一种由148个氨基酸组成的单链蛋白质,能够结合Ca形成Ca----CaM系统行使第二信使功能催化一些酶成为有活性的形式。

平衡溶液balanced solution:含有适当比例的各种植物必需元素和pH值,能使植物生长发育良好的溶液。

+-离子交换ion exchang:根细胞呼吸产生的CO2和H2O形成H和HCO3后被吸附于根细胞原生质表面并与土壤

+2-中的NH4和SO4进行交换而吸创刊在原生质表层,然后再经交换转移至原生质内部的过程。不需要能量。

被动吸收Passive absorption :是指因扩散作用或其它物理化学过程而引起的矿质元素的吸收, 又称非代谢性吸收。

主动吸收Active absorption :主动吸收是指植物细胞需要能量的逆电化学势吸收的过程。

Donnan平衡Donnan equilibrium :细胞内可扩散的阴阳离子浓度的乘积等于细胞外可扩散的阴阳离子浓度的乘积时的状态,叫做杜南平衡。

表观自由空间AFS:水自由空间(WFS)和杜南自由空间(DFS)合称为表观自由空间(AFS)。

载体学说Carrier theory:膜中存在载体,载体利用ATP活化后与相应离子结合,形成载体-离子复合物;复合体运转至膜内侧, 将离子释放到膜内。

离子泵学说Ionic pump theory:质膜上的ATP酶起着离子泵的作用,这种酶能使ATP水解, 将H+从膜内侧

-泵到膜外侧,形成跨膜电化学势梯度,造成阳离子通过离子通道内流。另一方面阴离子载体,使OH沿pH梯度向膜外侧转移,而其它阴离子(如NO3-)则跨膜从外侧运转至内侧。

离子通道学说Ion channel theory:离子通道如K+通道、Na+通道、Ca2+通道和Cl-通道等像门一样的系统,通过门的开闭来控制离子的高速跨膜运转。其开闭受到电势或光照等的调控。

协同效应Synergistic action:一种离子的存在促进另一种离子的吸收,从而提高了后者的有效性称协同作用。

稀释作用dilution effect:当亏缺的元素得到补充,植物又会迅速生长,使由于浓缩作用而积累的其它元素被消耗,浓度下降。

胞饮作用pinocytosis:细胞类似于变形虫等吞饮食物的一种特殊的摄取物质的方式。

生理酸性盐Physiologically acid salts:由于植物的选择吸收, 引起阳离子吸收量大于阴离子吸收量,使溶液变酸的这一类盐,称生理酸性盐。如NH4Cl、NH4SO4、KCl、CaCl等

生理碱性盐Physiologically alkaline salts :植物对阴离子的吸收量大于阳离子的吸收量,使溶液pH上升的这一类盐,称生理碱性盐。如Ca(NO3) 2、KNO3。

生理中性盐:植物对其阴阳离子的吸收相等,不因植物的吸收引起溶液pH改变的盐类称生理中性盐。如NH4NO3。

元素再利用:元素在一个部位使用后分解,移动到另一部位再次使用的现象称元素再利用

离子拮抗ion antagonism:这种离子间相互消除单盐毒害的现象,称离子拮抗。

根外追肥Absorption of mineral elements by leaf or foliar nutrition:在农业生产上常采用给植物地上部喷施肥料的措施,叫根外追肥或叶面营养

可再利用元素:元素在一个部位使用后分解,移动到另一部位再次使用的现象称元素再利用,能被再利用的称再利用元素

诱导酶induced enzyme:指组织本来不含(或很少有)此种酶,但在特定的外来物质(如底物)的影响下形成的酶并使酶的活性迅速提高。

养分临界期Nutrition critical period :植物对缺乏矿质元素最敏感,缺乏后最易受害的时期,称为营养临界期——“麦浇芽” 。

养分最大效率期Nutrition maximum efficient period :施肥效果最好的时期,这个时期对矿质营养需要量大,吸收能力强,若能满足肥料要求,增产效果十分显著,称为营养最大效率期——“菜浇花” 。

二、填空题

1 植物组织在灰化过程中,从土壤吸收的必需元素C、H、O、N已大部挥发散失,S也有一部分已经挥发。

2 在植物体内,C和O元素的含量大致都为其干重的45%,H为6%。 3 研究矿质营养常用的方法有水培养和沙培养。

4 确定必需元素的三条标准是缺少这种元素植物不能正常的生长发育,完成生活史、缺少这种元素时有专一的缺素症状,其它元素不能代替它使此症状消除,而只有这种元素的补充才能使症状消除和这种元素对植物的作用是直接的,而不是通过改善土壤或者培养液的物理化学和微生物条件来间接影响的。

5 目前已确认的植物必需元素有17种,其中大量元素9种 ,微量元素8种。 6 大多数植物,尤其是陆生植物,最主要的氮源是无机氮包括硝态氮和铵态氮。 7 植物缺N的典型症状主要是根须细长和矮小叶黄等(写2种)。 8 植物缺P的典型症状主要是新叶颜色深和老叶发红等(写2种)。 9 植物缺K的典型症状主要是根发育差和焦叶、易倒伏等(写2种)。

10 老叶和茎秆出现红色或紫色常是因为缺P所致,它使基部茎叶片积累大量糖分,合成花色素,所以产生红色。

11 缺Ca导致生长点死亡,可能与细胞壁的难以合成有关。

12 缺Ca的显著症状是生长点坏死,因为Ca是构成细胞壁的成分之一。 13 植物缺Ca的典型症状是生长点坏死、幼叶有缺刻状 (写主要两种)。 14 缺Mg能影响叶绿素合成,从而引起脉间变黄症状。 16 缺Fe能影响叶绿素合成,从而引起脉间缺绿。

17 缺B植株的显著症状是花而不实、组织易碎、生长点停止生长。

18 缺B导致纤维素化合物过多,从而伤害根尖等分生组织;缺硼还能影响糖的运输。 19 缺B导致生长点死亡,可能与细胞壁不能形成有关。

20 油菜“花而不实”与缺元素B有关;豆科植物根瘤发育不好与缺元素Mo、Fe有关。

21 在必需元素中,金属元素Zn与生长素合成有关,而Mn和Ca则与光合作用分解水,释放氧气有关。

22 在植物的必需元素中,K(抗倒伏)和P(抗旱抗寒)、Mo(抗病毒)与提高植物抗性有关。 23 在植物的必需元素中,与同化物运输关系较大元素的元素有B、K和P。 24 缺乏必需元素Mg、Fe、N、Mn等,均可引起植物产生缺绿病。 25 植物缺N与缺S其症状的相同点是植株矮小,,不同点则是缺N是老叶失绿、缺S是新叶失绿。 26 缺N和缺Fe都能引起缺绿病,二者区别在于缺氮老叶发病 ,缺铁幼叶发病。

27 植物必需元素中,Zn元素与生长素有关,Mn和Ca等元素参与光合作用中水的分解。 28 在必需(金属)元素中,Zn与生长素合成有关;,Mn、Ca与光合放氧有关;Mo、Fe与豆科植物根瘤发育有关。

29 当缺乏Ca、Fe、B等元素时,其病症先在嫩叶或生长点出现。 30 当缺乏P、N、K等元素时,其病症先在老叶出现。

31 果树常因缺元素Zn引起小叶病,油菜则常因缺元素B导致“花而不实”。 32 生物膜主要成份是蛋白质和脂类,此外还有一定数量的糖、核酸等 。

33 植物细胞吸收矿质元素的三种方式为 被动吸收 、 主动吸收 和 。 34 离子扩散除取决于化学势梯度外,还取决于电势梯度,二者合起来称为电化学势梯度。 35 表观自由空间(AFS)包括水自由空间(WFS)和杜南自由空间()两部分。

36 目前用来解释离子主动吸收机制的学说主要有载体学说和离子通道学说、离子泵学说等。 37 支持载体学说的实验证据是细胞吸收离子的饱和效应和竞争现象的存在。 38 长期施用硝态氮肥,可能导致土壤碱性,故称这类化肥为生理碱性盐。 39 土壤中施用NH4NO3,土壤pH不变,因此该化肥属于生理中性盐。 40 NH4Cl为生理酸性盐,NaNO3为生理碱性盐。

41 长期使用氨态氮化肥,会导致土壤pH下降,这类化肥故称为生理酸性盐。 42 影响根系吸收肥料的主要土壤因素是温度、O2浓度、pH值等。

43 当土壤溶液pH较低时,根表面正电荷增多,这有利于吸收阴离子。 44 根外追肥和喷药等,主要是通过叶面和幼茎进入植物体的。

45 土壤溶液pH升高时,Fe、Ca、Mg、Cu等离子逐渐变为不溶态,不利植物吸收;当土壤溶液pH

3-降低时,K、PO4、Mg、Ca等离子容易溶解,植物来不及吸收就易被雨水淋溶掉。

46 元素缺乏症状出现的部位,一方面与各元素的作用部位有关,更重要的是与各元素易移动性有关。

--47 高等植物体内NO3→NO2是由硝酸还原酶催化的,光合作用或呼吸作用为这一过程提供NADH。 48 根部吸收的硝酸盐,可以在叶和根器官进行还原。

49 根部吸收矿质元素,其向上运输的动力是蒸腾拉力和渗透压。

50 栽培叶菜类应多施N肥,栽培块根、块茎作物在后期应多施P、K、B肥。 51 栽培番薯、马铃薯后期应多施些K、P、B肥,栽培蔬菜应多施 N 肥。 52 植物合理施肥的指标有长相,叶色,叶绿素和酶活等。 53 水稻孕稻期,芯叶中酰胺的有无常作为N营养指标。 54 水稻叶鞘中的淀粉含量过高,常是N营养缺乏的指标。

三、选择题

1. 下列植物材料中,2的含灰量最高。

(1)种子 (2)叶片 (3)树皮 (4)木质部

2. 下列元素中,3在组织充分燃烧时已部分挥发,因此它在灰分中的含量已相对减少。 (1)N (2)P (3)S (4)Mg

3. 占植物体干重2以上的元素称为大量元素。

(1)百分之一 (2)千分之一 (3)万分之一 (4)十万分之一。 4. 一般说来,生物膜功能越复杂,膜中的1含量也相应增多。 (1)蛋白质 (2)脂类 (3)糖类 (4)核酸

5. 在旱作耕地上,多数非豆科植物生长发育的基本氮源是1态氮。 (1)NO3 –N (2)NH4-N (3)N2 (4)尿素。

6. 新叶绿色,老叶发黄并有死斑或焦边,一般与缺3有关。 (1)Zn (2)P (3)K (4)Mg

7. 新叶正常或色新,老叶暗绿有时带紫红色,一般与缺2有关。 (1)N (2)P (3)K (4)Mg

8. 植物缺乏4元素时,会引起蛋白质代谢失调,导致胺(腐胺与鲱精胺)中毒。 (1)P (2)S (3)N (4)K 9. 新叶正常,老叶脉间发黄(叶脉绿色),结果成网状脉,这是缺3的症状。 (1)N (2)S (3)Mg (4)P

10. 缺元素4会使豆科植物的根瘤发育不好。 (1)铁 (2)铜 (3)锌 (4)钼 11. 缺元素Zn,会影响 2 的合成。

(1)丙氨酸 (2)色氨酸 (3)蛋氨酸 (4)脯氨酸 12. 萝卜黑心、甜菜心腐,往往与缺B有关。 (1)K (2)Ca (3)B (4)P

13. 花粉内2含量较高,因为它有利于花粉萌发和花粉管伸长。 (1)Cu (2)B (3)Mo (4)Zn 14. 硅、钠、硒等元素,属于3元素。

(1)大量 (2)微量 (3)有益 (4)稀土

15. 引起黄瓜开裂、花椰等心腐等,一般与缺3有关。 (1)K (2)Ca (3)B (4)Mo 16. Co、Se、Na、Si等元素属于3。

(1)大量元素 (2)微量元素 (3)有益元素 (4)稀土元素。 17. 根系吸收水分和矿质营养时,二者在吸收的数量上4。 (1)正比 (2)正相关 (3)负相关 (4)无相关 18. 下列化肥中,2是生理酸性盐。

(1)NH4NO3 (2)(NH4)2SO4 (3)K NO3 (4)KH2PO4 19. 下列化肥中,3是属于生理碱性盐。

(1)NH4NO3 (2)(NH4)2SO4 (3)K NO3 (4)NH4H2PO4 20. 下列化肥中,3是最强的生理碱性盐。

(1)(NH4)2CO3 (2)KNO3 (3)NaNO3 (4)(NH4)2HPO4 21. (NH4) 2SO4 是一种1。

(1)生理酸性盐 (2)生理碱性盐 (3)化学中性盐 (4)生理中性盐

– –

22. 根系对Cl和NO3的吸收,两者之间 3。

(1)相互对抗 (2)相互促进 (3)存在着竞争性抑制 (4)不存在竞争性抑制。 23. 离子扩散取决于3梯度。

(1)化学势 (2)电势 (3)电化学势 (4) 浓度

24.3是指细胞不消耗能量能够逆浓度积累矿质离子的过程。

(1)离子泵 (2)自由扩散 (3)道南扩散 (4)载体运载 25. 钠一钾跨膜运输主要是依靠3。

(1)自由扩散 (2)道南扩散 (3)主动运输 (4)被动运输 26. 下列几组元素中,2组是容易再利用的。

(1)P、K、B (2)Mg、K、P (3)Ca、Mg、P (4)N、K、S

27. 矿质元素中的硫、钙、锰、铁等元素很少参与循环,它们往往集中分布在1。 (1)老叶 (2)新叶 (3)茎杆 (4)树皮

28. 在维管植物的较幼嫩部分,缺乏下列2元素时,缺素症状首先表现出来。 (1)K (2)Ca (3)P (4)N

-29. 在4,叶片中常不易测出NO3来。

(1)晴天 (2)多云天气 (3)阴天 (4)雨天 30 硝酸还原酶含有下列1矿质元素。

(1)Fe和Mo (2)Mg和Mo (3)Mn和Cu (4)Mo和Zn。

31 高等植物的硝酸还原酶总是优先利用下列物质中的4作为电子供体。 (1)FADH2 (2)NADPH2 (3)FMNH2 (4)NADH2。

32. 植物体内大部分的氨通过 2催化而同化成氨基酸的。

(1)谷氨酸脱H酶 (2)谷氨酰胺合成酶 (3)转氨酶 (4)氨甲酰磷酸合成酶。 33植物根部吸收的无机离子向植物地上部运输时主要通过4。 (1)韧皮部 (2)质外体 (3)转运细胞 (4)木质部。 34植物叶片的颜色常作为3肥是否充足的指标。 (1)P (2)S (3)N (4)K

35缺绿病是指3引起的叶片失绿症状。

(1)阳光不足 (2) 缺水 (3) 缺必需元素 (4) 气温过低 36植物组织内如酰胺含量极少,可能原因之一是土壤1肥不足。 (1)N (2)P (3)K (4)Mg 四、问答题

1. 何谓溶液培养?它在管理方面应注意什么?(6分)

把植物生长所需的各种元素按一定的比例和适宜的pH值配成溶液,用来培养植物的方法,称溶液培养。应注意的问题:a.选择合适的培养液;b.定期更换培养液;c.注意通气,以提供足够的O2,增强根系吸肥吸水的能力。

2. 氮肥过多或不足,会引起植物发生哪些变化?(7分)

N是植物体内很多重要化合物的组成成分,包括核酸、蛋白质、叶绿素、植物激素等等;同时它也参与了物质和能量的代谢。

因此N肥充足时枝叶繁茂,叶色浓绿,生长健壮,籽粒饱满。N肥过多会使茎叶徒长,易受病虫危害和倒伏,贪青迟熟。

不足时,植物细胞分裂和生长受阻,发育停滞,植株矮小,分枝或分蘖少,根系老化细长,叶、果实、种子少而小,开花、结实提早;又由于叶绿素合成受阻,而且N素容易在植物体内转移,所以缺N植物老叶失绿发黄,导致全株颜色较淡,不过一般无斑点。

3. 缺氮与缺铁为什么都能引起缺绿病,二者症状区别在哪里?(6分)

因为氮和铁是叶绿素合成所必需的元素,所以两者的缺乏都会影响叶绿素的合成而导致缺绿病。

由于N素易在植物体内移动,所以症状先出现在老叶上,从老叶逐渐向上扩展,下部的老叶易早衰、脱落。 而Fe不易在植物体内移动,所以症状首先出现在幼叶上,表现为脉间失绿,但叶脉信为绿色,整片新叶变为黄白甚至灰白,叶薄而柔软,表面茸毛很少。

4. 怎样才能证明某种元素是植物的必需?在进行这一工作时应注意些什么?(7分)

证明某种元素是植物的必需有三条标准:1.完全缺乏植物不能正常生长发育完成生活史;2.出现专一的缺素症状,并不能由其它元素的加入而消除,而只有加入该元素后植物才以恢复正常。3.此元素的功能必须是直接作用于植物的,而不是通过改善土壤或者培养基的物理化学和微生物条件所产生的间接效应。 只有符合以上三条准则才是植物必需的元素,可以采用水培法或者沙培法有目的地缺少一种元素来对比出现的缺素症状,按照准则来判断其是否是必需元素。

5. 植物组织内的酰胺含量高低,为什么可做为施氮肥的指标之一?(5分)

+

因为,植物体吸收的N素NH4被同化主要是通过谷酰胺合成酶-谷氨酸合酶途径,首先利用水解ATP产生的

-能量推动谷氨酸和NH4+合成谷氨酰胺。而吸收的NO3经硝酸还原酶还原为NO2-,又经亚硝酸还原酶还原为NH4+,通过以上途径合成谷氨酰胺。虽然谷氨酰胺还会经过其它的途径转化为其它的氨基酸,但是植物组织内的酰胺的含量高低代表了植物N素营养水平,当植物组织内含N时,则代表了N素充足,反之则缺乏。