小学奥数题型与解题思路大全1-60讲 联系客服

发布时间 : 星期日 文章小学奥数题型与解题思路大全1-60讲更新完毕开始阅读de2cf9b90a4e767f5acfa1c7aa00b52acec79c40

例如,面积均为4平方分米的正方形和圆,正方形的周长为8分米;而

的周长小于正方形的周长。

【面积变化规律】在周长一定的正多边形中,边数越多,面积越大。

为0.433×6=2.598(平方分米)。

方形的面积。

推论 由这一面积变化规律,可以推出下面的结论: 在周长一定的所有封闭图形中,以圆的面积为最大。

例如,周长为4分米的正方形面积为1平方分米;而周长为4分米的圆,

于和它周长相等的正方形面积。

【体积变化规律】在表面积一定的正多面体(各面为正n边形,各面角和各二面角相等的多面体)中,面数越多,体积越大。

例如,表面积为8平方厘米的正四面体S—ABC(如图1.30),它每一个面均为正三角形,每个三角形面积为2平方厘米,它的体积约是1.1697立方厘米。而表面积为8平方厘米

长约为1.1546厘米,体积约为1.539立方厘米。显然,正方体体积大于正四面体体积。

推论 由这一体积变化规律,可推出如下结论:

在表面积相等的所有封闭体中,以球的体积为最大。

例如,表面积为8平方厘米的正四面体,体积约为1.1697立方米;表面积为8平方厘米的正六面体(正方体),体积约为1.539立方厘米;而表面积是8平方厘米的球,体积却约有2.128立方厘米。可见上面的结论是正确的。

【排序不等式】 对于两个有序数组: a1≤a2≤…≤an 及b1≤b2≤…≤bn, 则a1b1+a2b2+……+anb抇n(同序)

T≥a1b抇1+a2b抇2+……+anb抇n(乱序)≥a1b

n+a2bn-1+……+anb1(倒序)(其中b抇1、b抇2、……、b抇n 为b1、b2、……、bn的任意一种排列(顺序、倒序排列在外),当且仅当a1=a2=…=an,或b1=b2=…=bn时,式中等号成立。)由这一不等式可知,同序积之和为最大,倒序积之和为最小。例题:设有10个人各拿一只水桶,同时到一个水龙头下接水。水龙头注满第一、第二、……九、十个人的桶,分别需要1、2、3、……、9、10分钟。问:如何安排这10个人的排队顺序,可使每个人所费时间的总和尽可能少?这个总费时至少是多少分钟?

>

解 设每人水桶注满时间的一个有序数组为:1,2,3,……,9,10。 打水时,等候的人数为第二个有序数组,等候时间最长的人数排前,这样组1,2,3,……,9,10。

根据排序不等式,最小积的和为倒序,即

1×10+2×9+3×8+4×7+5×6+6×5+7×4+8×3+9×2+10×1 =(1×10+2×9+3×8+4×7+5×6)×2 =(10+18+24+28+30)×2 =220(分钟)

其排队顺序应为:根据注满一桶水所需时间的多少,按从少到多的排法。

3、最优方案与最佳策略

【最优方案】

例1 某工厂每天要生产甲、乙两种产品,按工艺规定,每件甲产品需分别在A、B、C、D四台不同设备上加工2、1、4、0小时;每件乙产品需分别在A、B、C、D四台不同设备上加工2、2、0、4小时。已知A、B、C、D四台设备,每天最多能转动的时间分别是12、8、16、12小时。生产一件甲产品该厂得利润200元,生产一件乙产品得利润300元。问:每天如何安排生产,才能得到最大利润?

(中国台北第一届小学数学竞赛试题)

讲析:设每天生产甲产品a件,乙产品b件。由于设备A的转动时间每天最多为12小时,则有:(2a+2b)不超过12。 又(a+2b)不超过8, 4a不超过16, 4b不超过12。

由以上四个条件知,

当b取1时,a可取1、2、3、4; 当b取2时,a可取1、2、3、4; 当b取3时,a可取1、2。

这样,就是在以上情况下,求利润200a+300b的最大值。可列表如下:

所以,每天安排生产4件甲产品,2件乙产品时,能得到最大利润1400元。 例2 甲厂和乙厂是相邻的两个服装厂。它们生产同一规格的成衣,每个厂的人员和设备都能进行上衣和裤子生产。由于各厂的特点不同,甲厂每月

联合生产,尽量发挥各自的特长多生产成衣。那么现在比过去每月能多生产成衣______套。

(1989年全国小学数学奥林匹克初赛试题)

的时间生产上衣。所以,甲厂长于生产裤子,乙厂长于生产上衣。 如果甲厂全月生产裤子,则可生产

如果乙厂全月生产上衣,则可生产

把甲厂生产的裤子与乙厂生产的上衣配成2100套成衣,这时甲厂生产150条裤子的时间可用来生产成套的成衣

故现在比过去每月可以多生产60套。 【最佳策略】 例1 A、B二人从A开始,轮流在1、2、3、……、1990这1990个数中划去一个数,直到最后剩下两个数互质,那么B胜,否则A胜。问:谁能必胜?制胜的策略是什么?

(《中华电力杯》少年数学竞赛试题) 讲析:将这1990个数按每两个数分为一组;(1、2),(3、4),(5、6),…,(1989、1990)。

当A任意在括号中划去一个时,B就在同一个括号中划去另一个数。这样B就一定能获胜。

例2 桌上放有1992根火柴。甲乙两人轮流从中任取,每次取得根数为1根或2根,规定取得最后一根火柴者胜。问:谁可获胜? (1992年乌克兰基辅市小学数学竞赛试题)

讲析:因为两人轮流各取一次后,可以做到只取3根。谁要抢到第1992根,谁就必须抢到第1989根,进而抢到第1986、1983、1980、…、6、3根。 谁抢到第3根呢?自然是后取的人。即后取的可以获胜。

后者获胜的策略是,当先取的人每取一次火柴梗时,他紧接着取一次,每次取的根数与先取的加起来的和等于3。

例3 有分别装球73个和118个的两个箱子,两人轮流在任一箱中任意取球,规定取得最后一球者为胜。问:若要先取者为获胜,应如何取? (上海市数学竞赛试题)

讲析:先取者应不断地让后者在取球之前,使两箱的球处于平衡状态,即每次先取者取之后,使两箱球保持相等。这样,先取者一定获胜。