《金属学和热处理》崔忠圻[第二版]课后答案解析[完整版] 联系客服

发布时间 : 星期五 文章《金属学和热处理》崔忠圻[第二版]课后答案解析[完整版]更新完毕开始阅读eb61c74b670e52ea551810a6f524ccbff121ca26

能形成微孔并导致裂纹失稳扩展,直至断裂。此时整个裂纹界面的平均应力σc仍低于σ,也就是说含裂纹的脆性材料往往表现出低应力断裂,但断裂源于微孔聚集方式,微观断口形貌仍具有韧窝特征。

6-10 何谓断裂韧度,它在机械设计中有何功用 答:

应力强度因子:材料中不可避免的存在裂纹,当含有裂纹的材料受外加应力σ作用时,裂纹尖端应力场的各应力分量中均有一个共同因子KI(KI=σ√πa,a为裂纹长度的一半),用KI表示裂纹尖端应力场的强弱,简称应力强度因子。 断裂韧度:当外加应力达到临界值σc时,裂纹开始失稳扩展,引起断裂,相应地KI值增加到临界值Kc,这个临界应力场强度因子Kc称为材料的断裂韧度,可以通过实验测得。

平面应变断裂韧度:对同一材料来说,Kc取决于材料的厚度:随着厚度的增加,Kc单调减小至一常数KIc,这时裂纹尖端区域处于平面应变状态,KIc称为平面应变断裂韧度。

在机械设计中的功用:

1、 确定构件的安全性。根据探伤测定构件中的缺陷尺寸,在确定构件工作应力后,即可算出裂纹尖端应力强度因子KI。与构件材料的KIc相比,如果KI<KIc,则构件安全,否则有脆断危险。

2、 确定构件承载能力。根据探伤测出构件中最大裂纹尺寸,通过实验测得材料的KIc,就可由σc= KIc /√πa计算出断裂应力,从而确定构件的安全承载能力。

3、 确定临界裂纹尺寸。若已知材料KIc的和构件的实际工作应力,则可根据ac=KIc2/πσc2求出临界裂纹尺寸。如果探伤测定构件实际裂纹尺寸a<2ac,则构件安全,否则有脆断危险。

第七章 金属及合金的回复和再结晶

7-1 用冷拔铜丝线制作导线,冷拔之后应如何如理,为什么 答:

应采取回复退火(去应力退火)处理:即将冷变形金属加热到再结晶温度以下某一温度,并保温足够时间,然后缓慢冷却到室温的热处理工艺。 原因:铜丝冷拔属于再结晶温度以下的冷变形加工,冷塑性变形会使铜丝产生加工硬化和残留内应力,该残留内应力的存在容易导致铜丝在使用过程中断裂。因此,应当采用去应力退火使冷拔铜丝在基本上保持加工硬化的条件下降低其内应力(主要是第一类内应力),改善其塑性和韧性,提高其在使用过程的安全性。

7-2 一块厚纯金属板经冷弯并再结晶退火后,试画出截面上的显微组织示意图。 答:解答此题就是画出金属冷变形后晶粒回复、再结晶和晶粒长大过程示意图(可参考教材P195,图7-1)

7-3 已知W、Fe、Cu的熔点分别为3399℃、1538℃和1083℃,试估算其再结晶

温度。 答:

再结晶温度:通常把经过严重冷变形(变形度在70%以上)的金属,在约1h的保温时间内能够完成超过95%再结晶转变量的温度作为再结晶温度。

1、金属的最低再结晶温度与其熔点之间存在一经验关系式:T再≈δTm,对于工业纯金属来说:δ值为,取计算。

2、应当指出,为了消除冷塑性变形加工硬化现象,再结晶退火温度通常要比其最低再结晶温度高出100-200℃。 如上所述取T再=,可得: W再=3399×=℃ Fe再=1538×=℃ Cu再=1083×=℃

7-4 说明以下概念的本质区别: 1、一次再结晶和二次在结晶。

2、再结晶时晶核长大和再结晶后的晶粒长大。 答:

1、 一次再结晶和二次在结晶。 定义

一次再结晶:冷变形后的金属加热到一定温度,保温足够时间后,在原来的变形组织中产生了无畸变的新的等轴晶粒,位错密度显着下降,性能发生显着变化恢复到冷变形前的水平,称为(一次)再结晶。它的实质是新的晶粒形核、长大的过程。

二次再结晶:经过剧烈冷变形的某些金属材料,在较高温度下退火时,会出现反常的晶粒长大现象,即少数晶粒具有特别大的长大能力,逐步吞食掉周围的小晶粒,其最终尺寸超过原始晶粒的几十倍或上百倍,比临界变形后的再结晶晶粒还要粗大得多,这个过程称为二次再结晶。二次再结晶并不是晶粒重新形核和长大

的过程,它是以一次再结晶后的某些特殊晶粒作为基础而异常长大,严格来说它是特殊条件下的晶粒长大过程,并非是再结晶过程。 本质区别:是否有新的形核晶粒。

2、 再结晶时晶核长大和再结晶后的晶粒长大。 定义

再结晶晶核长大:是指再结晶晶核形成后长大至再结晶初始晶粒的过程。其长大驱动力是新晶粒与周围变形基体的畸变能差,促使晶核界面向畸变区域推进,界面移动的方向,也就是晶粒长大的方向总是远离界面曲率中心,直至所有畸变晶粒被新的无畸变晶粒代替。 再结晶后的晶粒长大:是指再结晶晶核长大成再结晶初始晶粒后,当温度继续升高或延长保温时间,晶粒仍然继续长大的过程。此时,晶粒长大的驱动力是晶粒长大前后总的界面能的差,界面移动的方向,也就是晶粒长大的方向都朝向晶界的曲率中心,直至晶界变成平面状,达到界面能最低的稳定状态。 本质区别:

1、 长大驱动力不同

2、 长大方向不同,即晶界的移动方向不同。

7-5 分析回复和再结晶阶段空位与位错的变化及其对性能的影响。 答:

回复阶段:

回复:是指冷塑性变形的金属在加热时,在光学显微组织发生改变前(即再结晶晶粒形成前)所产生的某些亚结构和性能的变化过程。 空位和位错的变化及对性能的影响:

回复过程中,空位和位错发生运动,从而改变了他们的数量和组态。

低温回复时,主要涉及空位的运动。空位可以移至表面、晶界或位错处消失,也可以聚集形成空位对、空位群,还可以与间隙原子相互作用而消失,总之空位运动的结果使空位密度大大减小。电阻率对空位密度比较敏感,因此其数值会有显着下降。而力学性能对空位的变化不敏感,没有变化。 中温回复时,主要涉及位错的运动。由于位错滑移会导致同一滑移面上异号位错合并而相互抵消,位错密度略有下降,但降低幅度不大,力学性能变化不大。 高温回复时,主要涉及位错的运动。位错不但可以滑移、而且可以攀移,发生多边化,使错密度有所降低,降低系统部分内应力,从而使硬度、强度略有下降,塑性、韧性得到改善。 综上,回复过程可以使冷塑性变形的金属在基本保持加工硬化的状态下降低其内应力(主要是第一类内应力),减轻工件的翘曲和变形,降低电阻率,提高材料的耐蚀性并改善其塑性和韧性,提高工件使用时的安全性。 再结晶阶段:

再结晶:冷变形后的金属加热到一定温度,保温足够时间后,在原来的变形组织中产生了无畸变的新的等轴晶粒,位错密度显着下降,性能也发生显着变化并恢复到冷变形前的水平。

空位和位错的变化及对性能的影响:

再结晶阶段主要是位错发生滑移、攀移和多变化,新的无畸变晶粒形成,位错密度显着下降,因塑性变形而造成的内应力可完全被消除,促使硬度和强度显着下

降,塑性和韧性得到明显提高。

7-6 何谓临界变形度在工业生产中有何实际意义。 答:

临界变形度:金属在冷塑性变形时,当变形度达到某一数值(一般金属均在2%-10%范围内)时,再结晶后的晶粒变得特别粗大。这是由于此时的变形度不大,晶核长大线速度和形核率的比值很大,因此得到特别粗大的晶粒。把对应得到特别粗大晶粒的变形度称为临界变形度。

实际意义:通常,粗大的晶粒对金属的力学性能十分不能,降低力学性能指标,因此在实际生产时,应当避免在临界变形度范围内进行压力加工。但是,有时为了某种特殊目的,需要得到粗晶粒钢时,例如用于制造电机或变压器的硅钢来说,晶粒越粗大越好(磁滞损耗小,效应高),,可以利用这种现象,制取粗晶粒甚至单晶。

7-7 一块纯锡板被枪弹击穿,经再结晶退火后,弹孔周围的晶粒大小有何特征,并说明原因。 答:

弹孔周围晶粒大小特征:晶粒大小随距弹孔的距离产生梯度变化,即距离弹孔距离越近晶粒越细,距离越远晶粒越大,并且在某一距离处(变形量处于临界变形量范围内),出现特别粗大晶粒组织。 原因:

1、 锡板被枪弹击穿产生的弹孔相当于弹孔处产生了剧烈的冷塑性变形,且距离弹孔越近则变形越剧烈。

2、 对冷塑性变形的金属进行再结晶退火,则冷变形的晶粒必然要发生再结晶,且再结晶后的晶粒大小与变形度密切相关,这是因为随着变形度的增加,形变储存能增加,再结晶驱动力增加,形核率N和晶粒长大线速度G同时增加,但G/N的比值减小,使再结晶的晶粒随变形度增加而变细。

3、 然而,当变形度在某一临界变形度范围内(一般金属在2%-10%范围内),由于变形度不大,G/N的比值很大,使再结晶的晶粒特别粗大。

7-8 某厂对高锰钢制碎矿机颚板进行固溶处理时,经1100℃加热后,用冷拔钢丝绳吊挂,由起重吊车送往淬火水槽。行至途中,钢丝绳突然断裂。这条钢丝绳是新的,事先经过检查,并无瑕疵。试分析钢丝绳断裂原因。 答: 原因:

1、 按题中所述钢丝绳的质量没有问题,那么钢丝绳发生断裂则必然使是由于所吊颚板重力对钢丝绳产生的应力超过了钢丝绳的抗拉强度造成的。在吊运过程中颚板对钢丝绳产生的应力没有变化,那么发生变化的则必然是钢丝绳的强度。

2、 由题述,该钢丝绳是冷拔而成,及结果冷塑性变形而成,必然产生了加工硬化现象。由于颚板经过1100加热固溶处理,所以在吊运过程中,高温颚板对