固体物理概念(自己整理) 联系客服

发布时间 : 星期五 文章固体物理概念(自己整理)更新完毕开始阅读f2f38a4db80d6c85ec3a87c24028915f814d840e

动量守恒定律)

??q1????q2?????q3?23h。1

第四章

1. Bloch定理----在周期场中运动的电子,其波函数为Bloch函数,物理意义为受晶格周期函数调制的平面波。

ik?r ??r?eukrk? ? ?ukr?ukr?Rl?

R?l1a1?l2a2?l3a3?l1,l2,l3?0,?1,?2? lq?q??q?K????????2. 能带结构----周期场中运动的电子的能量状态形成分段连续的能谱,由允带和禁带相间构成,称为能带结构 。

能带理论——研究固体中电子运动的主要理论基础,定性阐明了晶体中电子运动的普遍性的特点,说明了导体、非导体的区别,晶体中电子的平均自由程为什么远大于原子的间距,半导体理论问题的基础,推动了半导体技术的发展。能带理论是单电子近似的理论,将每个电子的运动看成是独立的在一个等效势场中的运动。其出发点为电子不再束缚于个别的原子,而在整个固体内运动和共有化电子。 能带——在形成分子时,原子轨道构成具有分立能级的分子轨道。晶体是由大量的原子有序堆积而成的。由原子轨道所构成的分子轨道的数量非常之大,以至于可以将所形成的分子轨道的能级看成是准连续的,即形成了能带。 3.允带和禁带(能隙)----允带指能带结构中允许电子能量状态取值的能量范围;禁带(能隙)是能带结构中电子能量状态不能取值的能量范围。

4.带底,带顶,能带宽度----带底指允带中能量的最小值处;带顶指允带中能量的最大值处,带顶能量与带底能量之差为能带宽度

?E?Ek?Ek maxmin5. 近自由电子模型----晶体中原子间距离较近时,电子的平均能量比较大,但其势能随位置的变化(起伏)比较小,电子的运动几乎是自由的,称为近自由电子模型,相当于金属中的价电子。 自由电子可视为其零级近似,而势能中较小的周期性起伏可视为微扰。 近自由电子模型得到的结果是:

1)远离布区边界处,电子的能量仅在自由电子能量上稍加修正(二级修正),其波函数为Bloch函数,是自由电子波函数叠加上较小的散射波成份。 2)在布区边界处,电子能谱将发生突变,产生能隙(禁带),禁带宽度为势函数在该边界处的傅里叶展式的系数的两倍。 1a?2?nx?Egn?2Un,Un?U?x?exp??i?dx0 aa??6. 紧束缚模型----晶体中原子间距离较大时,其势能随位置的变化(起伏)比较大,但原子之间相互作用较弱,电子的运动几乎是被束缚在一个原子周围,称为紧束缚模型,相当于金属的内层电子、绝缘体和半导体的价电子。孤立原子的解可视为其零级近似,而较弱的原子间相互作用可视为微扰。 紧束缚电子模型得到的结果是: 近邻 E?k???j?J0?J?Rs?exp??ik?Rs???????Rs

7. 能态密度----电子的能量状态按能量的分布函数,其值为单位能量间隔内的电子状态数:

dZ g?E??dE

8. 费米面-----K空间中能量值等于费米能的等能面。

第五章

1. 波包----以准经典语言描述晶体中电子时,可将电子视为波矢k0附近Δk范围的含时Bloch函数叠加形成的波包,波包能量集中在k0附近尺度为 2 ? ? k 的范围内,波包中心即为电子位置。

2. 相速度----波的相位的传播速度: Vp??k群速度----波的能量的传播速度: V?d?dkg3.Bloch电子运动速度----波包中心的群速度 。

d?d?E?1 V????kEkdkdk

??4. 准动量----晶体中电子的动量。 k?k?Kh

5. 有效质量----晶体中电子的表观质量,它体现了周期场对电子运动的影响。其物理意义:1)有效质量的大小仍然是惯性大小的量度;2)有效质量反映了电子在晶格与外场之间能量和动量的传递,因此可正可负。

6.满带----能带内所有能态均被电子填充。 7.导带----能带内部分能态被电子填充。 8.价带----价电子填充的能带。

9.禁带(能隙)----电子不能具有的能量范围。

10.空穴-----是一种准粒子,代表半导体近满带(价带)中少量空着的状态,相当于具有正的电子电荷和正的有效质量的粒子,空穴描述了近满带中大量电子的运动行为。

11.回旋共振----固体中的电子在恒定磁场中受洛仑兹力作用将作回旋运动,此时在固体上再加垂直于磁场的交变磁场,当交变磁场的频率等于电子的回旋频率时,发生强烈的共振吸收现象,称为回旋共振。

12.德?哈斯-范?阿尔芬效应---固体磁化率随磁场的倒数1/B作周期振荡的现象称为De Haas-Van Alphen效应。

13.隧道效应——隧道效应由微观粒子波动性所确定的量子效应。又称势垒贯穿。考虑粒子运动遇到一个高于粒子能量的势垒,按照经典力学,粒子是不可能越过势垒的;按照量子力学可以解出除了在势垒处的反射外,还有透过势垒的波函数,这表明在势垒的另一边,粒子具有一定的概率,粒子贯穿势垒。P250 第六章

1. Drude-Lorentz模型----自由电子气体的经典模型,模型要点:1)自由电子假设:电子除了在与晶格原子碰撞的瞬间外,其余时间的运动完全是自由的,平均自由时间可采用弛豫时间近似; 2)独立电子假设:电子-电子间的相互作用忽略不计;3)电子运动行为由经典力学和电磁学描述;4)电子遵从麦克斯韦-玻尔兹曼统计规律。

2. Sommerfeld模型----自由电子气体的量子模型。模型要点:1)自由电子假设:电子除了在与晶格原子碰撞的瞬间外,其余时间的运动完全是自由的,平均自由时间可采用弛豫时间近似; 2)独立电子假设:电子-电子间的相互作用忽略不计;3)电子运动行为由量子力学描

2??2???V?k(r)?0??k(r)?E?2m???述;

4)电子按能量的分布服从Fermi-Dirac统计规律。

3. 自由电子的波函数----- ?k?r??eV

224. 自由电子的能量----- E?k2m

1ik?r5. 费米统计----电子占据能量为E的状态的几率,或能量为E的状态上的平均电子数。

1f?F?D E?EFexp()?1

kBT

6. 费米能量----F-D分布中的EF称为费米能量,其值等于电子系统的化学势,物理意义:费米能量是T=0 K时电子占据态和未占据态的分界线,或T=0 K时系统中电子所具有最高能量。 费米面——电子填充区域和未填充区域的分界面,k空间的费米面 E=EF 。

7.费米波矢,费米速度,费米温度----与费米能相应的电子波矢、速度和温度。所有与费米能相关的物理量均可冠以“费米”的名称。

8. 功函数----电子脱离金属或半导体的束缚成为自由电子所需的最低能量 W ? V ? E V0:真空能级

0F9. 接触电势----两块不同的的金属相接触时,其表面分别出现正负电荷,两金属表面间的电势差称接触电势差。

11V12?V1?V2??W2?W1???EF1?EF2?

ee

10. 分布函数-----F-D分布是电子系统处于平衡态时的分布函数。一般情况下分布函数是 的函数,即

f?fr,k,t

分布函数的物理意义:在t时刻,电子处于r处k态附近单位相空间体积元的几率是 f r , k , 。 t

????11. 玻尔兹曼方程-----分布函数满足的运动方程:

df??f???f???f??????????

dt??t?d??t?c??t?

第七章晶体缺陷

1.点缺陷-----晶格周期性被破坏的程度在一个点周围一至几个晶格周期范围。 2.热缺陷----晶体中原子的无规则热运动引起的点缺陷。热缺陷的主要类型是空位(肖特基缺陷)和填隙原子,或空位和夫仑克尔缺陷(空位-填隙原子对)。

3.杂质缺陷-----是一种点缺陷,指晶体中极少量的外来原子。根据杂质在晶格中所占位置分为替位式杂质和填隙式杂质。

4.色心-----引起晶体颜色发生改变的点缺陷(元素化学计量比失配)。

5.极化子-----完整晶格中引入的多余电子是一种点缺陷,称极化子。这个多余电子的存在会引起周围晶格发生畸变,使正离子内移而负离子外移,是一种电子的自陷状态,电子走到哪里就把这种缺陷带到哪里。

6.位错-----线缺陷的主要类型是位错。晶体中位错线周围一至几个晶格周期内晶格周期遭到破坏,在晶体中形成一畸变的管道。位错的类型有刃型位错和螺型位错。

7.柏格斯回路-----用于描述位错的几何图象,是晶体中沿基矢方向行走形成的闭合回线,此闭合回线的矢量和称为柏格斯矢量,柏格斯矢量不等于零的晶体中存在位错。

8. 刃型位错----柏格斯矢量垂直于位错线的位错。其特点是:1)柏格斯矢量垂直于位错线;2)晶体中存在多余的半截原子面;3)有固定的滑移面。

9.螺位错----柏格斯矢量平行于位错线的位错。其特点是:1)柏格斯矢量平行于位错线;2)整个晶体形成一螺旋卷面;3)没有固定的滑移面,所有包含位错线的平面均为滑移面。 9.层错----密堆积结构中堆砌层发生错误所引起的一个面周围一至几个晶格周期内晶格的周期性遭到破坏,是一种面缺陷。

10. 晶粒间界-----多晶体的晶粒与晶粒之间的交界区域,晶格周期性遭到破坏,称为晶粒间界;晶粒间交角小于10度时称小角度晶界;小角度晶界可视为面缺陷,还可看作是一系列刃位错堆砌形成。

11.弗伦克缺陷、肖脱基缺陷 P543

12.滑移——滑移(slip) 晶体中产生范性形变的主要方式。滑移是某些晶面沿一定晶向发生的晶面间的相对平移。平移的量是布拉维点阵沿该晶向最小周期的整倍数。在滑移时晶体结构和位向保持不变。