热释电人体红外报警器的设计要点 联系客服

发布时间 : 星期二 文章热释电人体红外报警器的设计要点更新完毕开始阅读fd1ccb0a3a3567ec102de2bd960590c69ec3d8fd

元器件称为热释电元件。热释电辐射传感器由滤光片,热释电元件,高输入阻抗放大器等组成。由于热释电元件的内阻抗极高,需要场效应管做阻抗变换,制作中把热释电元件和场效应管封装在同一壳体里,为防止可见光对热释电元件的干扰,还得在其表面安装一个滤光片。滤光片的波段范围应选择与被测物体的红外辐射波长一致,例如,作为人体红外探测,滤光片应选取7.5~14μm波段,因外人体温度为37℃时,辐射的红外线在9.4μm处最强。

由于热释电元件不像其他光敏元件那样可连续接受光照,因为极化电荷在元器件表面停留过久就会与环境中的电荷中和或者泄露,即表面温度只有变化过程中才会有信号输出,但大部分物体的红外辐射都是恒定的。

所以,必须对红外辐射进行调制,使恒定的辐射变为交变辐射。设法使红外辐射不断变化,这样才能使传感器不断有信号输出。为了满足这一要求,通常在热释电传感器的使用中,总是要在它的前面加装一个菲涅尔透镜。

二、热释电红外线传感器的优缺点 优点:

本身不发任何类型的辐射

器件功耗很小,隐蔽性好,流动安装 价格低廉 缺点:

容易受各种热源、光源干扰

被动红外穿透力差,人体的红外辐射容易被遮挡,不易被探头接收 环境温度和人体温度接近时,探测和灵敏度明显下降,有时造成短时失灵 3.2菲涅尔透镜

菲涅尔透镜 (Fresnel lens) 多是由聚烯烃材料注压而成的薄片,也有玻璃制作的,镜片表面一面为光面,另一面刻录了由小到大的同心圆,它的纹理是利用光的干涉及扰射和根据相对灵敏度和接收角度要求来设计的,透镜的要求很高,一片优质的透镜必须是表面光洁,纹理清晰,其厚度随用途而变,多在1mm左右,特性为面积较大,厚度薄及侦测距离远。

一、菲涅尔透镜的原理

菲涅尔镜片是根据法国光物理学家FRESNEL发明的原理采用电镀模具工艺和PE(聚乙烯)材料压制而成。镜片(0.5mm厚)表面刻录了一圈圈由小到大,向外由浅至深的同心圆,从剖面看似锯齿。圆环线多而密感应角度大,焦距远;圆环线刻录的深感应距离远,焦距近。红外光线越是靠进同心环光线越集中而且越强。同一行的数个同心环组成一个垂直感应区,同心环之间组成一个水平感应段。垂直感应区越多垂直感应角度越大;镜片越长感应段越多水平感应角度就越大。区段数量多被感应人体移动幅度就小,区段数量少被感应人体移动幅度就要大。不同区的同心圆之间相互交错,减少区段之间的盲区。区与区

- 5 -

之间,段与段之间,区段之间形成盲区。由于镜片受到红外探头视场角度的制约,垂直和水平感应角度有限,镜片面积也有限。镜片从外观分类为:长形、方形、圆形,从功能分类为:单区多段、双区多段、多区多段。当人进入感应范围,人体释放的红外光透过镜片被聚集在远距离A区或中距离B区或近距离C区的某个段的同心环上,同心环与红外线探头有一个适当的焦距,红外光正好被探头接收,探头将光信号变成电信号送入电子电路驱动负载工作。整个接收人体红外光的方式也被称为被动式红外活动目标探测器。

二、菲涅尔透镜作用

作用:一是聚焦作用,即将热释红外信号折射(反射)在PIR上,第二个作用是将探测区域内分为若干个明区和暗区,使进入探测区域的移动物体能以温度变化的形式在PIR上产生变化热释红外信号

三、菲涅尔透镜的主要技术指标

外形尺寸,根据传感器和探测摘要来设计和生产不同尺寸的透镜。 水平视角和垂直视角,它表明透镜的可监视范围。 焦距,它表明镜片与传感器的安装距离。

第四章 热释电人体红外报警器的结构原理

4.1热释电人体红外报警器的总体结构

热释电人体红外报警器主要由信号放大电路、电压比较器、音响报警电路、开机延时电路、电源电路等几部分组成。菲涅尔透镜可以将人体辐射的红外线聚焦到热释电红外探测元上,同时也产生交替变化的红外辐射高灵敏区和盲区,以适应热释电探测元要求信号不断变化的特性;热释电红外传感器是报警器设计中的核心器件,它可以把人体的红外信号转换为电信号以供信号处理部分使用;信号处理主要是把传感器输出的微弱电信号进行放大、滤波、延迟、比较,为报警功能的实现打下基础。

4.2信号放大电路

- 6 -

图4-1 信号放大电路图

信号放大电路如图4-1,VT1和运算放大器LM358等组成放大电路,由IC1的②脚输出微弱的电信号,经三极管VT1组成的共发射极放大电路进行第一级放大,再通过C2耦合到运算放大器IC2A中进行高增益、低噪声的同相比例放大,此时由IC2A①脚输出的信号已足够强,输入电压比较电路。

一、放大电路的概述

“放大”的本质是实现能量的控制,即能量的转换:用能量比较小的输入信号来控制另一个能源,使输出端的负载上得到能量比较大的信号。放大的对象是变化量,放大的前提是传输不失真。放大电路的基本形式有3种:共发射极放大电路,共基极放大电路和共集电极放大电路。在构成多级放大器时,这几种电路常常需要相互组合使用。

二、放大电路的分析

反馈指将系统的输出返回到输入端并以某种方式改变输入,进而影响系统功能的过程。反馈可分为负反馈和正反馈。前者使输出起到与输入相反的作用,使系统输出与系统目标的误差减小,系统趋于稳定;后者使输出起到与输入相似的作用,使系统偏差不断增大,使系统振荡,可以放大控制作用。本电路采用的是由R2构成了电压并联负反馈电路,此电路还是共发射极放大电路。

共发射极放大电路具有以下特点: 输入信号与输出信号反相; 无电压放大作用; 有电流放大作用;

功率增益最高(与共集电极、共基极比较);

- 7 -

适用于电压放大与功率放大电路。 三、集成运放的概述

集成运算放大器简称集成运放,是由多级直接耦合放大电路组成的高增益模拟集成电路。它的增益高,输入电阻大,输出电阻低,共模抑制比高,失调与飘移小,而且还具有输入电压为零时输出电压亦为零的特点,适用于正,负两种极性信号的输入和输出。运算放大器除具有十、一输人端和输出端外,还有十、一电源供电端、外接补偿电路端、调零端、相位补偿端、公共接地端及其他附加端等。它的放大倍数取决于外接反馈电阻,这给使用带来很大方便。

四、集成运放的特点

集成运放采用直接耦合放大器,对直流信号和交流信号都有放大作用;

为克服零飘现象,提高共模抑制比,输入端全部采用差分放大电路,并采用恒流源供电;

采用复合管提高电路的增益;

电路中的无源器件都采用无源器件来代替。 五、集成运放的传输特性

本电路由R7、R8、C4组成同相比例放大电路。同相比例运算放大器在正常运行的时候,输出电压总是满足使反馈在反向输入端的电压等于同相端的电压(Av= R8/R7+1)。如果在放大器输出端接上负载引起输出电压下降,那么下降的输出电压就会使反馈在反向输入端的电压不等于同相端的电压,于是又会引起输出端的电压回到Av= R8/R7+1的参数。这与反向比例放大器的调整作用原理相同。

六、芯片介绍 1.芯片一:LM358 (1)芯片概述

LM358 内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。

- 8 -